8 research outputs found

    The Expression of Myeloproliferative Neoplasm-Associated Calreticulin Variants Depends on the Functionality of ER-Associated Degradation

    Get PDF
    BACKGROUND: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. METHODS: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. RESULTS: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. CONCLUSIONS: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes

    Análise de interação genética entre mutantes de eIF5A e de fatores de degradação de mRNA e busca de supressores extragênicos em S. cerevisae

    No full text
    O provável fator de início de tradução 5A (eIF5A) é altamente conservado de arqueas a mamíferos e sofre uma modificação pós-traducional única e essencial chamada hipusinação. Este fator já foi relacionado ao transporte nucleocitoplasmático, à degradação de mRNA e à proliferação celular. Dados recentes restabelecem uma função para eIF5A na tradução e sugerem a sua atuação na etapa de elongação ao invés de início, como originalmente proposto. Uma vez que o envolvimento de eIF5A com a degradação de mRNA ainda não foi elucidado, tornou-se interessante estudar qual a natureza desta relação. O metabolismo de mRNA é um processo complexo que envolve as etapas da tradução, repressão da tradução e degradação de mRNA. Na primeira parte deste trabalho, foi avaliada a existência de interação genética sintética entre os mutantes tif51A-1 e tif51A-3 e mutantes de fatores envolvidos com a repressão da tradução e/ou degradação de mRNA. Foi revelada uma supressão parcial do fenótipo de termossensibilidade com nocautes dos genes SBP1, DHH1 e PAT1, que codificam fatores ativadores da remoção do capacete de metilguanosina e repressores da tradução. Por outro lado, uma interação sintético doente (“synthetic sick”) entre os mutantes tif51A-1 e xrn1Δ foi observada.Os dados obtidos reforçam o envolvimento de eIF5A com a elongação da tradução, mostram que o efeito de eIF5A na degradação de mRNA é secundário e sugerem uma função para eIF5A como ativador da tradução. Na segunda etapa são apresentados os resultados do rastreamento de supressores extragênicos do mutante tif51A-1 através de deleções genômicas induzidas por transposon. Foram rastreados aproximadamente 2,2x105 transformantes... (Resumo completo, clicar acesso eletrônico abaixo

    Structure-Based Drug Discovery of IRE1 Modulators

    No full text
    International audienceIRE1α (inositol-requiring enzyme 1 alpha, referred to IRE1 hereafter) is an Endoplasmic Reticulum (ER) resident transmembrane enzyme with cytosolic kinase/RNAse activities. Upon ER stress IRE1 is activated through trans-autophosphorylation and oligomerization, resulting in a conformational change of the RNase domain, thereby promoting two signaling pathways: i) the non-conventional splicing of XBP1 mRNA and ii) the regulated IRE1-dependent decay of RNA (RIDD). IRE1 RNase activity has been linked to diverse pathologies such as cancer or inflammatory, metabolic, and degenerative diseases and the modulation of IRE1 activity is emerging as an appealing therapeutic strategy against these diseases. Several modulators of IRE1 activity have been reported in the past, but none have successfully translated into the clinics as yet. Based on our expertise in the field, we describe in this chapter the approaches and protocols we used to discover novel IRE1 modulators and characterize their effect on IRE1 activity

    Pharmacological Targeting of IRE1 in Cancer

    No full text
    International audienceIRE1α (inositol requiring enzyme 1 alpha) is one of the main transducers of the unfolded protein response (UPR). IRE1α plays instrumental protumoral roles in several cancers, and high IRE1α activity has been associated with poorer prognoses. In this context, IRE1α has been identified as a potentially relevant therapeutic target. Pharmacological inhibition of IRE1α activity can be achieved by targeting either the kinase domain or the RNase domain. Herein, the recent advances in IRE1α pharmacological targeting is summarized. We describe the identification and optimization of IRE1α inhibitors as well as their mode of action and limitations as anticancer drugs. The potential pitfalls and challenges that could be faced in the clinic, and the opportunities that IRE1α modulating strategies may present are discussed

    Sensor dimer disruption as a new mode of action to block the IRE1-mediated unfolded protein response

    No full text
    International audienceThe unfolded protein response (UPR) is activated to cope with an accumulation of improperly folded proteins in the Endoplasmic reticulum (ER). The Inositol requiring enzyme 1α (IRE1α) is the most evolutionary conserved transducer of the UPR. Activated IRE1 forms ’back-to-back’-dimers that enables the unconventional splicing of X-box Binding Protein 1 (XBP1) mRNA. The spliced XBP1 (XBP1s) mRNA is translated into a transcription factor controlling the expression of UPR target genes. Herein, we report a detailed in silico screening specifically targeting for the first time the dimer interface at the IRE1 RNase region. Using the database of FDA approved drugs, we identified four compounds (neomycin, pemetrexed, quercitrin and rutin) that were able to bind to and distort IRE1 RNase cavity. The activity of the compounds on IRE1 phosphorylation was evaluated in HEK293T cells and on IRE1 RNase activity using an in vitro fluorescence assay. These analyzes revealed sub-micromolar IC(50) values. The current study reveals a new and unique mode of action to target and block the IRE1-mediated UPR signaling, whereby we may avoid problems associated with selectivity occurring when targeting the IRE1 kinase pocket as well as the inherent reactivity of covalent inhibitors targeting the RNase pocket

    Structural and molecular bases to IRE1 activity modulation

    No full text
    International audienceThe Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules

    A novel blood brain barrier-permeable IRE1 kinase inhibitor for adjuvant glioblastoma treatment in mice.

    No full text
    Inositol Requiring Enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease. It is a major mediator of the Unfolded Protein Response (UPR), which is activated upon endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues such as hypoxia or nutrient shortage and high metabolic/protein folding demand. To cope with those stresses, cancer cells can rely on IRE1 signaling as an adaptive mechanism. Herein, we report the discovery of novel IRE1 inhibitors identified through the structural exploration of the IRE1 kinase domain. We characterized the candidates in vitro and in cellular models and showed that all molecules inhibit IRE1 signaling and sensitize glioblastoma cells to the standard chemotherapeutic temozolomide (TMZ). We next selected a Blood-Brain Barrier (BBB) permeable inhibitor (Z4P) among these molecules and demonstrated its ability to inhibit Glioblastoma (GB) growth and to prevent relapse in vivo when administered together with TMZ. The hit compound disclosed in this study satisfies an unmet need for targeted, non-toxic IRE1 inhibitors and our results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB

    A novel IRE1 kinase inhibitor for adjuvant glioblastoma treatment

    No full text
    Summary: Inositol-requiring enzyme 1 (IRE1) is a major mediator of the unfolded protein response (UPR), which is activated upon endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues, a stress overcome by relying on IRE1 signaling as an adaptive mechanism. Herein, we report the discovery of structurally new IRE1 inhibitors identified through the structural exploration of its kinase domain. Characterization in in vitro and in cellular models showed that they inhibit IRE1 signaling and sensitize glioblastoma (GB) cells to the standard chemotherapeutic, temozolomide (TMZ). Finally, we demonstrate that one of these inhibitors, Z4P, permeates the blood–brain barrier (BBB), inhibits GB growth, and prevents relapse in vivo when administered together with TMZ. The hit compound disclosed herein satisfies an unmet need for targeted, non-toxic IRE1 inhibitors and our results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB
    corecore