925 research outputs found
Evolutionary Trends in True Time Delay Line Technologies for Timed Array Radars
Timed array technology is rapidly evolving in multiple areas such as high resolution imaging radar, automotive, medical, high data rate communication applications etc. Timed arrays by utilising True Time Delay (TTD) lines in place of phase shifters mitigate beam squint and pulse dispersion issues associated with wide instantaneous bandwidth arrays. This paper presents on review of evolutionary trends in TTD line architectures starting from coaxial cable to photonic integrated circuit. The paper also reports on critical parameters of TTD lines, their importance and implication in design of typical X-band imaging radar. Comparison of different TTD line architectures in terms of configuration, implementation, merits and demerits are discussed in detail for wideband array application. The paper also brings out the integration aspects of TTD lines as part of T/R modules and proposes suitable design schemes towards performance optimization and realisation of timed arrays
Transcriptome-Based Differentiation of Closely-Related Miscanthus Lines
BACKGROUND: Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. RESULTS: A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. CONCLUSIONS: Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
fMRI evidence of ‘mirror’ responses to geometric shapes
Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control
Pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV
We present a systematic analysis of two-pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV using the STAR detector at Relativistic Heavy Ion Collider. We extract the Hanbury-Brown and Twiss radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianness of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast-wave parametrizations. The expansion of the source and its relation with the initial energy density distribution is studied
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Bronchoalveolar lavage fluid from preterm infants with chorioamnionitis inhibits alveolar epithelial repair
<p>Abstract</p> <p>Background</p> <p>Preterm infants are highly susceptible to lung injury. While both chorioamnionitis and antenatal steroids induce lung maturation, chorioamnionitis is also associated with adverse lung development. We investigated the ability of bronchoalveolar lavage fluid (BALF) from ventilated preterm infants to restore alveolar epithelial integrity after injury <it>in vitro</it>, depending on whether or not they were exposed to chorioamnionitis or antenatal steroids. For this purpose, a translational model for alveolar epithelial repair was developed and characterised.</p> <p>Methods</p> <p>BALF was added to mechanically wounded monolayers of A549 cells. Wound closure was quantified over time and compared between preterm infants (gestational age < 32 wks) exposed or not exposed to chorioamnionitis and antenatal steroids (≥ 1 dose). Furthermore, keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF) were quantified in BALF, and their ability to induce alveolar epithelial repair was evaluated in the model.</p> <p>Results</p> <p>On day 0/1, BALF from infants exposed to antenatal steroids significantly increased epithelial repair (40.3 ± 35.5 vs. -6.3 ± 75.0% above control/mg protein), while chorioamnionitis decreased wound-healing capacity of BALF (-2.9 ± 87.1 vs. 40.2 ± 36.9% above control/mg protein). BALF from patients with chorioamnionitis contained less KGF (11 (0-27) vs. 0 (0-4) pg/ml) and less detectable VEGF (66 vs. 95%) on day 0. BALF levels of VEGF and KGF correlated with its ability to induce wound repair. Moreover, KGF stimulated epithelial repair dose-dependently, although the low levels in BALF suggest KGF is not a major modulator of BALF-induced wound repair. VEGF also stimulated alveolar epithelial repair, an effect that was blocked by addition of soluble VEGF receptor-1 (sVEGFr1/Flt-1). However, BALF-induced wound repair was not significantly affected by addition of sVEGFr1.</p> <p>Conclusion</p> <p>Antenatal steroids improve the ability of BALF derived from preterm infants to stimulate alveolar epithelial repair <it>in vitro</it>. Conversely, chorioamnionitis is associated with decreased wound-healing capacity of BALF. A definite role for KGF and VEGF in either process could not be established. Decreased ability to induce alveolar epithelial repair after injury may contribute to the association between chorioamnionitis and adverse lung development in mechanically ventilated preterm infants.</p
Cirrhotic livers reveal genetic changes in the MDM2-P14ARF system of cell cycle regulators
The genesis of hepatocellular carcinoma is promoted by changes in the regulatory MDM2-P14ARF system. The incidence of such changes has to date not been analysed in non-tumourous livers showing regenerative proliferation. In the present study, 24 cirrhotic livers of alcohol-, autoimmue disorder- or HCV-caused genesis were screened for MDM2-P14ARF alterations at the level of protein, DNA and mRNA. Using confocal laser scanning microscopy, the absence of MDM2 and P14ARF expression was detected in all samples except three HCV-infected livers (four livers) which contained hepatocytes overexpressing MDM2 (P14ARF) protein. In two of the samples lacking P14ARF expression, laser microdissection and PCR demonstrated deletion of the P14ARF gene. The P14ARF gene amplified from other specimens did not carry mutations. MDM2 splicing variants were present in tissues from alcohol- and autoimmune disorder-induced cirrhoses. Sequencing of full-size mRNA revealed a MDM2 mis-sense mutation in an alcohol-induced cirrhosis. One sample contained regenerative nodules with genetic instability occurring at MDM2 locus D12S83 according to the data of automatic PCR fragment analysis. In summary, this study gives first evidence for different types of MDM2 and P14ARF alterations in cirrhotic livers. We suggest that the changes impair the regulatory MDM2-P14ARF system, thus possibly favouring regenerative proliferation and transformation
Evaluating major curriculum change:the effect on student confidence
Aim:
The aim of this study was to evaluate the effect of major curriculum change within a UK dental school on final-year student self-rated confidence levels.
Methods:
Final-year dental students graduating in each year between 2007 and 2012 completed the same course evaluation questionnaire, which assessed their confidence in relation to a range of clinical procedures using a Likert-type scale. This period spanned the introduction of a new curriculum and allowed analysis of differences in self-rated confidence between students graduating from the old (2007 and 2008) and new (2009–2012) curricula, across thirty key procedures.
Results:
New curriculum students showed significantly higher self-confidence ratings in nineteen of the thirty procedures, compared with those on the old curriculum. For the remaining eleven procedures there was no significant difference between the two curricula. The proportion of students on the outcomes-based curriculum rating themselves as 'confident” was statistically significantly higher in seven out of the thirty procedures, when compared with the traditional curriculum, and unchanged or nonsignificantly increased in the remainder.
Discussion and conclusions:
The relationship between specific curricular innovations and student confidence is considered, as is the usefulness of self-rated confidence in curriculum evaluation. Curriculum change appeared to have a positive effect on student confidence across a range of procedures
- …