294 research outputs found

    Spicules and the effect of rigid rods on enclosing membrane tubes

    Full text link
    Membrane tubes (spicules) arise in cells, or artificial membranes, in the nonlinear deformation regime due to, e.g. the growth of microtubules, actin filaments or sickle hemoglobin fibers towards a membrane. We calculate the axial force exerted by the cylindrical membrane tube, and its average radius, by taking into account steric interactions between the fluctuating membrane and the enclosed rod. The force required to confine a fluctuating membrane near the surface of the enclosed rod diverges as the separation approaches zero. This results in a smooth crossover of the axial force between a square root and a linear dependence on the membrane tension as the tension increases and the tube radius shrinks. This crossover can occur at the most physiologically relevant membrane tensions. Our work may be important in (i) interpreting experiments in which axial force is related to the tube radius or membrane tension (ii) dynamical theories for biopolymer growth in narrow tubes where these fluctuation effects control the tube radius.Comment: 10 pages, 1 figur

    Valuing Potential Groundwater Protection Benefits

    Get PDF
    This paper explores the implications of endogenous risk for the economic value of preventing groundwater contamination. We consider the analytical implications of endogenous risk for five key building blocks frequently used to structure studies of groundwater valuation: The probability and the location of contamination, the exposed population, risk perceptions, and Intertemporal issues

    Activation of TRPA1 by membrane permeable local anesthetics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low concentrations of local anesthetics (LAs) suppress cellular excitability by inhibiting voltage-gated Na<sup>+ </sup>channels. In contrast, LAs at high concentrations can be excitatory and neurotoxic. We recently demonstrated that LA-evoked activation of sensory neurons is mediated by the capsaicin receptor TRPV1, and, to a lesser extent by the irritant receptor TRPA1. LA-induced activation and sensitization of TRPV1 involves a domain that is similar, but not identical to the vanilloid-binding domain. Additionally, activation of TRPV1 by LAs involves PLC and PI(4,5)P<sub>2</sub>-signalling. In the present study we aimed to characterize essential structural determinants for LA-evoked activation of TRPA1.</p> <p>Results</p> <p>Recombinant rodent and human TRPA1 were expressed in HEK293t cells and investigated by means of whole-cell patch clamp recordings. The LA lidocaine activates TRPA1 in a concentration-dependent manner. The membrane impermeable lidocaine-derivative QX-314 is inactive when applied extracellularly. Lidocaine-activated TRPA1-currents are blocked by the TRPA1-antagonist HC-030031. Lidocaine is also an inhibitor of TRPA1, an effect that is more obvious in rodent than in human TRPA1. This species-specific difference is linked to the pore region (transmembrane domain 5 and 6) as described for activation of TRPA1 by menthol. Unlike menthol-sensitivity however, lidocaine-sensitivity is not similarly determined by serine- and threonine-residues within TM5. Instead, intracellular cysteine residues known to be covalently bound by reactive TRPA1-agonists seem to mediate activation of TRPA1 by LAs.</p> <p>Conclusions</p> <p>The structural determinants involved in activation of TRPA1 by LAs are disparate from those involved in activation by menthol or those involved in activation of TRPV1 by LAs.</p

    Formation and Interaction of Membrane Tubes

    Full text link
    We show that the formation of membrane tubes (or membrane tethers), which is a crucial step in many biological processes, is highly non-trivial and involves first order shape transitions. The force exerted by an emerging tube is a non-monotonic function of its length. We point out that tubes attract each other, which eventually leads to their coalescence. We also show that detached tubes behave like semiflexible filaments with a rather short persistence length. We suggest that these properties play an important role in the formation and structure of tubular organelles.Comment: 4 pages, 3 figure

    Cell motility: the integrating role of the plasma membrane

    Get PDF
    The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process

    The role of myosin-II in force generation of DRG filopodia and lamellipodia

    Get PDF
    Differentiating neurons process the mechanical stimulus by exerting the protrusive forces through lamellipodia and filopodia. We used optical tweezers, video imaging and immunocytochemistry to analyze the role of non-muscle myosin-II on the protrusive force exerted by lamellipodia and filopodia from developing growth cones (GCs) of isolated Dorsal Root Ganglia (DRG) neurons. When the activity of myosin-II was inhibited by 30\ue2 ... 1/4M Blebbistatin protrusion/retraction cycles of lamellipodia slowed down and during retraction lamellipodia could not lift up axially as in control condition. Inhibition of actin polymerization with 25\ue2 ...nM Cytochalasin-D and of microtubule polymerization with 500\ue2 ...nM Nocodazole slowed down the protrusion/retraction cycles, but only Cytochalasin-D decreased lamellipodia axial motion. The force exerted by lamellipodia treated with Blebbistatin decreased by 50%, but, surprisingly, the force exerted by filopodia increased by 20-50%. The concomitant disruption of microtubules caused by Nocodazole abolished the increase of the force exerted by filopodia treated with Blebbistatin. These results suggest that; i-Myosin-II controls the force exerted by lamellipodia and filopodia; ii-contractions of the actomyosin complex formed by filaments of actin and myosin have an active role in ruffle formation; iii-myosin-II is an essential component of the structural stability of GCs architecture

    Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex

    Get PDF
    Background: The Wave complex activates the Arp2/3 complex, inducing actin polymerization in lamellipodia and membrane ruffles. The Wave complex is composed of five subunits, the smallest of which, Brick1/Hspc300 (Brk1), is the least characterized. We previously reported that, unlike the other subunits, Brk1 also exists as a free form. Principal Findings: Here we report that this free form of Brk1 is composed of homotrimers. Using a novel assay in which purified free Brk1 is electroporated into HeLa cells, we were able to follow its biochemical fate in cells and to show that free Brk1 becomes incorporated into the Wave complex. Importantly, incorporation of free Brk1 into the Wave complex was blocked upon inhibition of protein synthesis and incorporated Brk1 was found to associate preferentially with neosynthesized subunits. Brk1 depleted HeLa cells were found to bleb, as were Nap1, Wave2 or ARPC2 depleted cells, suggesting that this blebbing phenotype of Brk1 depleted cells is due to an impairment of the Wave complex function rather than a specific function of free Brk1. Blebs of Brk1 depleted cells were emitted at sites where lamellipodia and membrane ruffles were normally emitted. In Brk1 depleted cells, the electroporation of free Brk1 was sufficient to restore Wave complex assembly and to rescue the blebbing phenotype. Conclusion: Together these results establish that the free form of Brk1 is an essential precursor in the assembly of

    Comparison of the force exerted by hippocampal and DRG growth cones

    Get PDF
    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 \ub5m(2) and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties

    Texture analysis of MR images of patients with Mild Traumatic Brain Injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA).</p> <p>Methods</p> <p>We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the levels of mesencephalon, corona radiata and centrum semiovale and in different segments of corpus callosum (CC) which have been found to be sensitive to damage. The same procedure was carried out on a control group of ten healthy volunteers. Patients' TA data was compared with the TA results of the control group comparing the amount of statistically significantly differing TA parameters between the left and right sides of the cerebral tissue and comparing the most discriminative parameters.</p> <p>Results</p> <p>There were statistically significant differences especially in several co-occurrence and run-length matrix based parameters between left and right side in the area of mesencephalon, in cerebral white matter at the level of corona radiata and in the segments of CC in patients. Considerably less difference was observed in the healthy controls.</p> <p>Conclusions</p> <p>TA revealed significant changes in texture parameters of cerebral tissue between hemispheres and CC segments in TBI patients. TA may serve as a novel additional tool for detecting the conventionally invisible changes in cerebral tissue in MTBI and help the clinicians to make an early diagnosis.</p

    Infective endocarditis in intravenous drug abusers: an update

    Get PDF
    Infective endocarditis despite advances in diagnosis remains a common cause of hospitalization, with high morbidity and mortality rates. Through literature review it is possible to conclude that polymicrobial endocarditis occurs mainly in intravenous drug abusers with predominance in the right side of the heart, often with tricuspid valve involvement. This fact can be associated with the type of drug used by the patients; therefore, knowledge of the patient's history is critical for adjustment of the therapy. It is also important to emphasize that the most common combinations of organisms in polymicrobial infective endocarditis are: Staphylococcus aureus, Streptococcus pneumonia and Pseudomonas aeruginosa, as well as mixed cultures of Candida spp. and bacteria. A better understanding of the epidemiology and associated risk factors are required in order to develop an efficient therapy, although PE studies are difficult to perform due to the rarity of cases and lack of prospective cohorts.This work was supported by Portuguese Foundation for Science and Technology (FCT) through the grants SFRH/BPD/47693/2008, SFRH/BPD/20987/2004 and SFRH/BPD/72632/2010 attributed to Claudia Sousa, Claudia Botelho and Diana Rodrigues, respectively
    corecore