46 research outputs found

    Profiling Insulin Like Factor 3 (INSL3) Signaling in Human Osteoblasts

    Get PDF
    Abstract BACKGROUND: Young men with mutations in the gene for the INSL3 receptor (Relaxin family peptide 2, RXFP2) are at risk of reduced bone mass and osteoporosis. Consistent with the human phenotype, bone analyses of Rxfp2(-/-) mice showed decreased bone volume, alterations of the trabecular bone, reduced mineralizing surface, bone formation, and osteoclast surface. The aim of this study was to elucidate the INSL3/RXFP2 signaling pathways and targets in human osteoblasts. METHODOLOGY/PRINCIPAL FINDINGS: Alkaline phosphatase (ALP) production, protein phosphorylation, intracellular calcium, gene expression, and mineralization studies have been performed. INSL3 induced a significant increase in ALP production, and Western blot and ELISA analyses of multiple intracellular signaling pathway molecules and their phosphorylation status revealed that the MAPK was the major pathway influenced by INSL3, whereas it does not modify intracellular calcium concentration. Quantitative Real Time PCR and Western blotting showed that INSL3 regulates the expression of different osteoblast markers. Alizarin red-S staining confirmed that INSL3-stimulated osteoblasts are fully differentiated and able to mineralize the extracellular matrix. CONCLUSIONS/SIGNIFICANCE: Together with previous findings, this study demonstrates that the INSL3/RXFP2 system is involved in bone metabolism by acting on the MAPK cascade and stimulating transcription of important genes of osteoblast maturation/differentiation and osteoclastogenesis

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Release kinetics of ampicillin, biocompatibility tests with a fibroblast strain of a zirconia gel glass

    No full text
    Biocompatibility remains the central theme for biomaterials applications in medicine. It is generally accepted that this term does not indicate only absence of a cytotoxic effect but also positive effects in the sense of biofunctionality, i.e. promotion of biological processes considering the intended aim of the application of a biomaterial. Biocompatibility of zirconia gel glass was studied using in vitro testing methods, the incubation period was 7, 14, 21 days. The bioactivity of the synthesized material had been shown by the formation of a layer of hydroxyapatite on the surface of ZrO 2-Y2O3(5wt%) samples soaked in a fluid simulating the composition of the human blood plasma (SBF), as observed by SEM and EDS microscopy. Studies of drug delivery kinetics were also carried out. The amount of sodium ampicillin released has been detected by UV-VIS spectroscopy. The released kinetics seems to occur in more than one stage. HPLC analysis had also been carried out to ensure the integrity of ampicillin after the synthetic treatmen

    Sol-gel synthesis, characterization and bioactivity of Poly(ether-imide)/TiO2 hybrid materials

    No full text
    Novel organic-inorganic hybrid materials were synthesized by the sol-gel method from a multicomponent solution containing titanium butoxide, 6 weight % (wt%) or 12 wt% poly(ether-imide) (PEI), water and chloroform. The structure of the interpenetrating network is realized by hydrogen bonds between the Ti-OH group (H-donator) in the sol-gel intermediate species and the carboxylic group (H-acceptor) in the repeating units of the polymer. By Fourier transform infrared (FTIR) analysis the presence of hydrogen bonds between organic-inorganic components of the hybrid materials were proved. The morphology of the hybrid materials was studied by scanning electron microscopy (SEM). The structure of a molecular level dispersion was disclosed by an atomic force microscope (AFM), pore size distribution and surface measurements. The AFM and SEM analyzes confirmed that the PEI/TiO2 samples can be considered homogenous organic/inorganic hybrid materials because in both the compositions studied the average domains were less than 400 nm in size. The bioactivity of the synthesized hybrid materials was demonstrated by the formation of a layer of hydroxyapatite on the surface of the PEI/TiO2 samples soaked in a fluid simulating the composition of human blood plasma (SBF), demonstrated by SEM and energy dispersive spectroscopy (EDS) microscop

    Characterization,bioactivity and ampicillin release kinetics of of TiO2 and TiO2-4SiO2 synthesized by sol-gel processing

    No full text
    Local drug delivery of antimicrobics by sustained release delivery system can be used to treat periodontal disease. Advantages of these systems may include maintaining high levels of antibiotic in the gingival crevicular fluid for a sustained period of time and ease of use with high patient acceptance. The materials used are TiO2 and TiO24SiO2, mixed with sodium ampicillin, a broad-spectrum antibiotic, have been synthesized by sol-gel method. The amorphous nature of the gels was ascertained by X-ray diffraction analysis. Release kinetics in a simulated body fluid (SBF) have been subsequently investigated. The amount of sodium ampicillin released has been detected by UV-VIS spectroscopy and SEM. The release kinetics seems to occur in more than one stage. HPLC analysis has also been taken to ensure the integrity of ampicillin after the synthetic treatment. Finally, SEM micrographs and EDS analysis showed the formation of a hydroxyapatite layer on the surface of the samples soaked in SBF. Both the materials showed good release and could be used as drug delivery bioactive systems. High antimicrobial effects of samples against Escherichia coliand Streptococcus mutants were foun

    ANTIBACTERIAL AND BIOACTIVE SILVER-CONTAINING Na2O CaO 2SiO2 GLASS PREPARED BY SOL-GEL METHOD

    No full text
    The antibacterial effect of addition of silver oxide to Na 2O·CaO·2SiO 2 glass have been studied. Silver containing and silver free Na 2O·CaO·2SiO 2 glasses have been prepared by sol-gel synthesis using tetramethil orthosilicate, sodium ethoxide, calcium nitrate tetrahydrate and silver nitrate as starting materials and methyl ethyl ketone as solvent. The gel was examined by differential thermal analysis, thermo gravimetric analysis, FTIR spectroscopy and X-ray diffraction analysis. Antibacterial and bioactive tests on gel glass powders, obtained after a heat treatment of 2 h at 600°C of the dried gel, were carried out. High antimicrobial effects of samples against Escherichia coli and Streptococcus mutans were found. FTIR measurements and SEM micrographs have ascertained the formation of a hydroxyapatite layer on the surface of samples soaked in a simulated body fluid for different times

    SOL-GEL SYNTHESIS, CHARACTERIAZATION AND BIOACTIVITY OF POLYCAPROLACTONE/SI02 HYBRID MATERIAL

    No full text
    A novel organic/inorganic hybrid material was synthesized by sol-gel method from a multicomponent solution containing tetramethylorthosilicate (TMOS), polycaprolactone (PCL, water, and methilethylketone (MEK). The interpenetrating network structure is realized by hydrogen bonds between Si-OH group (H donator) in the sol-gel intermediate species and carboxylic group (H-acceptor) in the repeating units of the polymer. The presence of hydrogen bonds between organic/inorganic components of the hybrid material was proved by FTIR analysis. The morphology of the hybrid material was studied by scanning electron microscope (SEM). The structure of a molecular level dispersion has been disclosed by atomic force microscope (AFM), pore size distribution and surface measurements. The bioactivity of the synthesized hybrid material has been showed by the formation of a layer of hydroxyapatite on the surface of PCL/SiO2 samples soaked in a fluid simulating the composition of the human blood plasm

    Release kinetics of ampicillin, characterization and bioactivity of TiO2/PCL hybrid materials synthesized by sol-gel processing

    No full text
    Poly(ε-caprolactone) (PCL 6, 12, and 24 wt %) and titanium (TiO 2) organic-inorganic hybrid materials have been synthesized by the sol-gel method from a multicomponent solution containing titanium butoxide, poly(ε-caprolactone) (PCL), water, and chloroform (CHCl3). Sodium ampicillin was incorporated in the hybrid material to verify the effect as local controlled drug delivery system. The structure of a hybrid materials interpenetrating network is realized by hydrogen bonds between Ti-OH group (H-donator) in the sol-gel intermediate species and carboxylic group (H-acceptor) in the repeating units of the polymer. The presence of hydrogen bonds between organic/inorganic components of the hybrid materials was proved by FTIR analysis. The morphology of the hybrid materials was studied by scanning electron microscope (SEM). The structure of a molecular level dispersion has been disclosed by atomic force microscope (AFM), pore size distribution and surface measurements. The bioactivity of the synthesized hybrid materials has been showed by the formation of a layer of hydroxyapatite on the surface of TiO2/PCL samples soaked in a fluid simulating the composition of the human blood plasma. The amount of sodium ampicillin released has been detected by UV-vis spectroscopy and SEM. The release kinetics seems to occur in more than one stage. HPLC analysis has also been taken to ensure the integrity of ampicillin after the synthetic treatmen

    Characterization, bioactivity and ampicillin release kinetics of TiO2 and TiO24SiO2 synthesized by sol-gel processing

    No full text
    corecore