5,685 research outputs found

    Chiral Symmetry Restoration and Dileptons in Relativistic Heavy-Ion Collisions

    Full text link
    The current theoretical status in the analysis and interpretation of low-mass dilepton measurements in (ultra-) relativistic heavy-ion experiments is reviewed. Special emphasis is put on potential signals of (partial) restoration of dynamically broken chiral symmetry in a hot and dense hadronic medium. It follows from chiral symmetry alone that parity partners of hadronic correlation functions must become identical when the symmetry is restored. The assessment of medium effects in the vector channel, which governs the dilepton production, thus necessitates a simultaneous treatment of the vector and axialvector degrees of freedom. While significant progress in this respect has been made some open questions remain in establishing a rigorous link in the mass region below 1 GeV. From the present calculations a suggestive 'quark-hadron duality' emerges near the phase boundary. It implies substantial medium effects in the dilepton signal from the hadronic phase which smoothly matches a perturbative description within the plasma phase.Comment: 164 pages LaTeX including 88 eps-/ps-figures, Review Article to appear in Adv. Nucl. Phy

    Probing Chiral Symmetry Restoration with Heavy Ions

    Get PDF
    It is discussed how chiral symmetry restoration manifests itself through mixing of vector and axial-vector correlators. The vector correlator is directly accessible in relativistic heavy-ion collisions. Within models of the vector correlator its implications for low-mass dilepton spectra are reviewed.Comment: 11 pages LaTeX, incl. 6 eps-figures and appb.sty; Talk given at the Workshop on 'The Structure of Mesons, Baryons and Nuclei', Cracow, May 1998, in honor of J. Speth's 60th birthday, to be published in Acta Physica Polonica

    Quark Recombination and Heavy Quark Diffusion in Hot Nuclear Matter

    Full text link
    We discuss resonance recombination for quarks and show that it is compatible with quark and hadron distributions in local thermal equilibrium. We then calculate realistic heavy quark phase space distributions in heavy ion collisions using Langevin simulations with non-perturbative T-matrix interactions in hydrodynamic backgrounds. We hadronize the heavy quarks on the critical hypersurface given by hydrodynamics after constructing a criterion for the relative recombination and fragmentation contributions. We discuss the influence of recombination and flow on the resulting heavy meson and single electron R_AA and elliptic flow. We will also comment on the effect of diffusion of open heavy flavor mesons in the hadronic phase.Comment: Contribution to Quark Matter 2011, submitted to J.Phys.G; 4 pages, 5 figure

    Rho Meson Propagation and Dilepton Enhancement in Hot Hadronic Matter

    Get PDF
    A realistic model for the free rho meson with coupling to two-pion states is employed to calculate the rho propagator in a hot and dense hadron gas. The medium modifications are based on hadronic rescattering processes: intermediate two-pion states are renormalized through interactions with surrounding nucleons and deltas, and rho meson scattering is considered off nucleons, deltas, pions and kaons. Constraints from gauge invariance as well as the full off-shell dynamics of the interactions are accounted for. Within the vector dominance model we apply the resulting in-medium rho spectral function to compute e+ee^+e^- production rates from π+π\pi^+\pi^- annihilation. The calculation of corresponding e+ee^+e^- spectra as recently measured in central collisions of heavy-ions at CERN/SpS energies gives reasonable agreement with the experimental data.Comment: 27 pages RevTeX, 9 eps-figures, submitted to Nucl. Phys.

    Medium Modifications of the Rho Meson at CERN/SPS Energies

    Full text link
    Rho meson propagation in hot hadronic matter is studied in a model with coupling to ππ\pi\pi states. Medium modifications are induced by a change of the pion dispersion relation through collisions with nucleons and Δs\Delta's in the fireball. Maintaining gauge invariance dilepton production is calculated and compared to the recent data of the CERES collaboration in central S+Au collisions at 200 GeV/u. The observed enhancement of the rate below the rho meson mass can be largely accounted for.Comment: 10 pages RevTeX and 2 figures (uuencoded .ps-files

    A Microscopic Calculation of Photoabsorption Cross Sections on Protons and Nuclei

    Get PDF
    A recently developed model for ρ\rho-meson propagation in dense hadronic matter is applied to total photoabsorption cross sections in γ\gamma-proton and γ\gamma-nucleus reactions. Within the vector dominance model the photon coupling to the virtual pion cloud of the nucleon, two-body meson-exchange currents, as well as γ\gamma-nucleon resonances are included. Whereas the γp\gamma p reaction is determined by the low-density limit of the model, higher orders in the nuclear density are important to correctly account for the experimental spectra observed on both light and heavy nuclei over a wide range of photon energies, including the region below the pion threshold. In connection with soft dilepton spectra in high-energy heavy-ion collisions we emphasize the importance of photoabsorption to further constrain the parameters of the model.Comment: 10 pages RevTeX, 2 eps-figure

    Momentum Dependence of the Pion Cloud for Rho Mesons in Nuclear Matter

    Get PDF
    We extend hadronic models for rho-meson propagation in cold nuclear matter via coupling to in-medium pions to include finite three-momentum. Special care is taken to preserve gauge invariance. Consequences for photoabsorption on the proton and on nuclei as well as for the dilepton production in relativistic heavy-ion collisions are discussed.Comment: 32 pages, 18 figures. Corrected version, accepted for publication in Nucl. Phys.

    Modifications of the Rho Meson from the Virtual Pion Cloud in Hot and Dense Matter

    Get PDF
    The modification of the rho-meson self-energy due to the coupling to in-medium pions is calculated consistently at finite baryon density and temperature, keeping the full 3-momentum dependence in a gauge invariant way. As a function of nucleon density, the rho-meson spectral function is strongly enhanced in the invariant mass region M < 650 MeV, while the maximum, i.e. the pole mass, is slightly shifted upwards. As a function of temperature, for fixed nucleon density, the imaginary part of the self-energy increases further due to Bose-enhancement. At the same time the mass shift from the real part becomes very large. As a consequence of these medium effects, the dilepton rate in the low-mass region M < 650 MeV increases strongly, while the peak at M = 770 MeV disappears.Comment: 18 pages, 9 figures; resonance contributions adde
    corecore