23,692 research outputs found

    Modeling Three and Four Coupled Phase Qubits

    Full text link
    The Josephson junction phase qubit has been shown to be a viable candidate for quantum computation. In recent years, the two coupled phase system has been extensively studied theoretically and experimentally. We have analyzed the quantum behavior of three and four capacitively-coupled phase qubits with different possible configurations, using a two-level system model. Energy levels and eigenstates have been calculated as a function of bias current and detuning. The properties of these simple networks are discussed

    Nuclear binding energies: Global collective structure and local shell-model correlations

    Get PDF
    Nuclear binding energies and two-neutron separation energies are analyzed starting from the liquid-drop model and the nuclear shell model in order to describe the global trends of the above observables. We subsequently concentrate on the Interacting Boson Model (IBM) and discuss a new method in order to provide a consistent description of both, ground-state and excited-state properties. We address the artefacts that appear when crossing mid-shell using the IBM formulation and perform detailed numerical calculations for nuclei situated in the 50-82 shell. We also concentrate on local deviations from the above global trends in binding energy and two-neutron separation energies that appear in the neutron-deficient Pb region. We address possible effects on the binding energy, caused by mixing of low-lying 0+0^{+} intruder states into the ground state, using configuration mixing in the IBM framework. We also study ground-state properties using a deformed mean-field approach. Detailed comparisons with recent experimental data in the Pb region are amply discussed.Comment: 69 pages, TeX (ReVTeX). 23 eps figures. 1 table. Modified version. Accepted in Nucl. Phys.

    Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

    Get PDF
    We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review

    Local tetragonal distortion in La_{0.7}Sr_{0.3}MnO_3 strained thin films probed by x-ray absorption spectroscopy

    Full text link
    We report on an angular resolved X-ray Absorption Spectroscopy study of La0.7Sr0.3MnO3La_{0.7}Sr_{0.3}MnO_{3} thin films epitaxially grown by pulsed laser deposition on slightly mismatched substrates which induce tensile or compressive strains. XANES spectra give evidence of tetragonal distortion within the MnO6MnO_{6} octahedra, with opposite directions for tensile and compressive strains. Quantitative analysis has been done and a model of tetragonal distortion reflecting the strain has been established. EXAFS data collected in plane for tensile substrate confirm the change in the MnOMn-O average bond distance and the increase of MnMnMn-Mn length matching with the enlargement of the cell parameter. From these results we conclude that there is no significant change in the MnOMnMn-O-Mn angle. Our observations conflict with the scenarios which this angle is the main driving parameter in the sensitivity of manganite films properties to external strains and suggest that the distortion within the octahedra plays a key role in the modification of the transport and magnetic properties.Comment: 8 pages, 6 figure

    Comparison of coherence times in three dc SQUID phase qubits

    Full text link
    We report measurements of spectroscopic linewidth and Rabi oscillations in three thin-film dc SQUID phase qubits. One device had a single-turn Al loop, the second had a 6-turn Nb loop, and the third was a first order gradiometer formed from 6-turn wound and counter-wound Nb coils to provide isolation from spatially uniform flux noise. In the 6 - 7.2 GHz range, the spectroscopic coherence times for the gradiometer varied from 4 ns to 8 ns, about the same as for the other devices (4 to 10 ns). The time constant for decay of Rabi oscillations was significantly longer in the single-turn Al device (20 to 30 ns) than either of the Nb devices (10 to 15 ns). These results imply that spatially uniform flux noise is not the main source of decoherence or inhomogenous broadening in these devices.Comment: 4 pages, 5 figures, accepted for publication in IEEE Trans. Appl. Supercon

    A CF3I-based SDD Prototype for Spin-independent Dark Matter Searches

    Full text link
    The application of Superheated Droplet Detectors (SDDs) to dark matter searches has so far been confined to the light nuclei refrigerants C2ClF5 and C4F10 (SIMPLE and PICASSO, respectively), with a principle sensitivity to spin-dependent interactions. Given the competitive results of these devices, as a result of their intrinsic insensitivity to backgrounds, we have developed a prototype trifluoroiodomethane (CF3I)-loaded SDD with increased sensitivity to spin-independent interactions as well. A low (0.102 kgd) exposure test operation of two high concentration, 1 liter devices is described, and the results compared with leading experiments in both spin-dependent and -independent sectors. Although competitive in both sectors when the difference in exposures is accounted for, a problem with fracturing of the detector gel must be addressed before significantly larger exposures can be envisioned.Comment: revised and updated; accepted Astrop. Phy

    O uso de unidades de referência como ferramenta para a construção de sistemas agrícolas biodiversos para a agricultura familiar.

    Get PDF
    Resumo: Os sistemas de produção biodiversos são formas inovadoras de agricultura e pecuária que buscam aliar benefícios econômicos e ambientais, apoiados no incremento da biodiversidade. O Programa ?Sistemas agrícolas familiares biodiversos?, desenvolvido pela Equipe de Agroecologia da Embrapa Meio Ambiente, se caracteriza pela gradual formação de redes sócio-técnicas, articuladas em torno de Unidades de Referência (URs). As URs são parcelas ou unidades produtivas onde se desenvolvem todas as atividades técnicas sobre sistemas biodiversos (experimentação, capacitação e irradiação do conhecimento). O objetivo principal das URs é o de se tornarem inspiração para os demais agricultores na forma de exemplos práticos que possam ser adaptados à situação dos agricultores beneficiários finais, servindo como base para a criação de pequenas redes interligando URs em nível de microrregiões. Por meio destas estratégias de gestão reforça-se a replicabilidade dos conhecimentos gerados e o impacto sobre um número maior de beneficiários, podendo servir de base para a formulação de políticas públicas para a diversificação produtiva da agricultura familiar. Abstract: Biodiverse production systems are innovative forms of agriculture and livestock willing to align economic and environmental benefits, supported in increasing biodiversity. The 'family biodiverse agricultural systems' program, developed by Embrapa Environment Team Agroecology, is characterized by the gradual formation of socio-technical networks, articulated around the Reference Units (RUs ). The RUs are plots or production units where they develop all technical activities on biodiverse systems (experimentation, training and knowledge irradiation). The main objective of RUs is to become inspiration for other farmers in the form of practical examples that can be adapted to the situation of the beneficiaries end farmers, serving as a basis for creating small networks interconnecting RUs. Through these management strategies reinforces the replicability of knowledge generated and the impact on a larger number of beneficiaries, could be a basis for the formulation of public policies for productive diversification of family farming

    Glassy phases and driven response of the phase-field-crystal model with random pinning

    Get PDF
    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then finally a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes
    corecore