168 research outputs found
Bridging the Gap: The Role of Apprenticeship Training Programs
This paper summarizes a study on the prospects and challenges of apprenticeship training programs for vocational students from schools in India. The study explores the current state of vocational education in India and the potential benefits of apprenticeship programs for students. It also discusses the challenges faced by the implementation of such programs, including the lack of coordination between educational institutions and industry, inadequate infrastructure, and inadequate regulatory framework. The study concludes that apprenticeship training programs have the potential to address the skills gap in India's workforce and improve the employability of vocational students, but significant efforts are needed to overcome the existing challenges and create a more supportive ecosystem for apprenticeship training programs in India
Empowering the Next Generation of Entrepreneurs: The Role of Innovation and Incubation Centres
This study examines the critical role of incubation centers in empowering the next generation of entrepreneurs and contributing to the growth of economies worldwide. It explores the importance of incubation centers and highlights the crucial role of incubation centers in fostering entrepreneurship by providing resources, mentorship, and support to startups. The analysis of 26 peer-reviewed articles reveals consistent evidence of the positive impact of incubation centers on entrepreneurship development. Key findings include the ability of incubators to provide access to resources, facilitate knowledge sharing, and create supportive environments for startups to thrive. The study further presents data from surveys conducted with students and entrepreneurs engaged with incubation centers. Findings highlight the positive perception of incubation centers, with entrepreneurs reporting significant improvement in skills, access to valuable networks, and increased chances of success. The study further identifies challenges faced by incubation centers, such as lack of sustainable funding, bureaucratic hurdles, and limitations in selection processes. It proposes solutions like diversified funding models, streamlined administrative procedures, and focus on inclusivity to overcome these challenges. The study emphasizes the importance of creating a supportive ecosystem for startups, with incubation centers playing a key role in fostering collaboration and knowledge sharing. It suggests measures like creating vibrant communities, promoting entrepreneurial mindset, and nurturing innovation to empower the next generation of entrepreneurs. The study highlights the need for further research and strategic interventions to optimize the effectiveness of these centers and empower future generations of entrepreneurs
Recommended from our members
Fasting limits the increase in intracellular calcium during ischemia in isolated rat hearts
IntroductionFasting has been shown to limit ischemic injury and improve functional activity after global ischemia. Because calcium overload is considered a mechanism of ischemic injury, we hypothesized that fasting would limit the accumulation of intracellular calcium [Ca]i during ischemia, potentially due to reduced accumulation of intracellular sodium [Na]i.MethodsTo address this hypothesis, hearts isolated from rats fed either a normal diet or fasted for 24 hours underwent 20 min of global ischemia at 37 degrees. In addition to functional parameters, [Na]i and [Ca]i were measured using 21Na and 19F spectroscopy using thulium-DOTP-5 and 5F-BAPTA, respectively. In vitro measurement of sarcoplasmic reticulum calcium uptake and release, as well as activity of the sarcolemmal Na-Ca exchanger, was performed in hearts from fed and fasted animals under baseline and ischemic conditions.ResultsHearts from fasted animals showed greater recovery of developed pressure (37+/-9 vs. 11+/-6 cm H2O, p < 0.05) and less contracture (end-diastolic pressure 25+/-2 vs. 47+/-2 cm H2O, p < 0.05) by the end of the reperfusion period. [Na]i was similar in the 2 groups during the first half of the ischemic period, albeit with a higher concentration of [Na]i in hearts from fed compared to fasted animals at reperfusion. Fasting markedly limited calcium accumulation during ischemia, with end-ischemic calcium being 419+/-46 nM in the hearts from fasted animals and 858+/-140 nM in the hearts from fed animals (p < 0.01). There was no significant effect of fasting on calcium uptake or release by the SR, nor on sarcolemmal Na-Ca exchange activity.ConclusionsFasting for 24 hours improves functional recovery and markedly limits [Ca]i accumulation during ischemia and early reperfusion. The mechanism for this phenomenon remains to be elucidated
Recommended from our members
Attenuation of ischemia induced increases in sodium and calcium by the aldose reductase inhibitor Zopolrestat
ObjectiveWe have previously demonstrated that zopolrestat, an inhibitor of the enzyme aldose reductase, reduces ischemic injury in hearts from diabetic and non-diabetic rats. To further explore potential cardioprotective mechanisms of zopolrestat, we measured changes in intracellular sodium, calcium, and Na+,K(+)-ATPase activity in zopolrestat treated hearts during ischemia and reperfusion.MethodsHearts from acute diabetic (Type I) and age-matched control rats were isolated and retrogradely perfused. Hearts had either control perfusion or exposure to 1 microM zopolrestat for 10 min, followed by 20 min of global ischemia and 60 min of reperfusion. Changes in intracellular sodium and calcium were measured using 23Na and 19F magnetic resonance spectroscopy, respectively, while the activity of Na+,K(+)-ATPase was measured using biochemical assays.ResultsZopolrestat blunted the rise in [Na]i during ischemia in both diabetic hearts and non-diabetic hearts. The end-ischemic [Na]i was 21.3 +/- 2.6 mM in the zopolrestat treated diabetics and 25.9 +/- 2.3 in zopolrestat treated non-diabetics, versus 31.6 +/- 2.6 mM and 32.9 +/- 2.8 mM in the untreated diabetics and untreated non-diabetics, respectively, (P = 0.002). Similarly, the rise in [Ca]i at the end of ischemia was significantly reduced in zopolrestat treated diabetic and non-diabetic hearts (P = 0.005). Zopolrestat increased the activity of Na-,K(+)-ATPase in diabetic hearts under baseline conditions (11.70 +/- 0.95 versus 7.28 +/- 0.98 mumol/h/mg protein, P = 0.005) as well as during ischemia and reperfusion. Similar changes in Na+,K(+)-ATPase activity were also observed in non-diabetic hearts.ConclusionsThe data provide additional support to the protective effects of zopolrestat and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Na]i and [Ca]i during ischemia and reperfusion
Foliar application of Ascophyllum nodosum on improvement of photosynthesis, fruit setting percentage, yield and quality of tomato (Solanum lycopersicum L.)
In recent days, liquid formulations of brown seaweed extract, Ascophyllum nodosum used as a biostimulant in agriculture. Various studies suggest that A. nodosum enhanced the growth and yield of agriculturally important crops, but still, there is a lack of information about the biostimulation effects on photosynthesis, flowering and fruit setting of tomato. Hence, the present study aimed to know the effect of foliar application of A. nodosum on photosynthesis, flowering, fruit setting, yield and quality of tomato. A biostimulant product, MC Set with A. nodosum extract applied to tomato as a foliar spray at rates of three different concentrations such as 1.0 L ha−1 (MS 1), 2.0 L ha−1 (MS 2), 3.0 L ha−1 (MS 3) for six times during flowering of 2nd (30 Days after transplanting – DAT), 3rd (40 DAT) and 4th (50 DAT) cluster and fruit setting of 2nd (60 DAT), 3rd (70 DAT) and 4th (80 DAT) cluster respectively. The MC Set treatments enhanced the plant photosynthesis, flower number and fruit number per cluster, yield and quality traits of tomato. However, the middle concentration MS 2 showed highest photosynthetic rate, stomatal conductance, SPAD value, flower and fruit in 2nd, 3rd and 4th cluster. It also had better average fruit weight and yield per plant and hectare and enhanced the quality parameters such as total soluble solids, ascorbic acid content, lycopene and total sugars compared to control and other two concentrations of MS Set. Hence, using A. nodosum extract on tomato growth could be a better sustainable crop production method.
Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts
We investigated the role of polyol pathway enzymes aldose reductase (AR) and sorbitol dehydrogenase (SDH) in mediating injury due to ischemia-reperfusion (IR) in Type 2 diabetic BBZ rat hearts. Specifically, we investigated, (a) changes in glucose flux via cardiac AR and SDH as a function of diabetes duration, (b) ischemic injury and function after IR, (c) the effect of inhibition of AR or SDH on ischemic injury and function. Hearts isolated from BBZ rats, after 12 weeks or 48 weeks diabetes duration, and their non-diabetic littermates, were subjected to IR protocol. Myocardial function, substrate flux via AR and SDH, and tissue lactate:pyruvate (L/P) ratio (a measure of cytosolic NADH/NAD+), and lactate dehydrogenase (LDH) release (a marker of IR injury) were measured. Zopolrestat, and CP-470,711 were used to inhibit AR and SDH, respectively. Myocardial sorbitol and fructose content, and associated changes in L/P ratios were significantly higher in BBZ rats compared to non-diabetics, and increased with disease duration. Induction of IR resulted in increased ischemic injury, reduced ATP levels, increases in L/P ratio, and poor cardiac function in BBZ rat hearts, while inhibition of AR or SDH attenuated these changes and protected hearts from IR injury. These data indicate that AR and SDH are key modulators of myocardial IR injury in BBZ rat hearts and that inhibition of polyol pathway could in principle be used as a therapeutic adjunct for protection of ischemic myocardium in Type 2 diabetic patients
Screening of antimicrobial compound from the sea slug Armina babai
Different solvents such as acetone, butanol, ethanol, hexane and methanol of Sea slug Armina babai was evaluated for its biomedical properties. Most potent extracts were purified using silica gel column and the active fractions were characterized by TLC, SDS-PAGE and FTIR. Maximum zone of inhibition was recorded against Pseudomonas sp., and minimum zone of inhibition was recorded against Proteus mirabilis by butanol extracts. TLC profiling with Rf value 0.82 indicating the presence of amino acids and peptides. Total protein was estimated as 21.36% with molecular weight range between 13 and 72 kDa in SDS-PAGE. The FT-IR spectrum of fractions, obtained from sea slug, reveals characteristic functional groups range between 465.75 and 3423.82 cm-1. Thus the obtained results indicate the presence of potent antimicrobial compounds in sea slug A. babai may pave the way to explore the potential development of new compounds to be launched in the pharmaceutical filling
Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion
Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction
- …