518 research outputs found

    Parametric coupling for superconducting qubits

    Full text link
    We propose a scheme to couple two superconducting charge or flux qubits biased at their symmetry points with unequal energy splittings. Modulating the coupling constant between two qubits at the sum or difference of their two frequencies allows to bring them into resonance in the rotating frame. Switching on and off the modulation amounts to switching on and off the coupling which can be realized at nanosecond speed. We discuss various physical implementations of this idea, and find that our scheme can lead to rapid operation of a two-qubit gate.Comment: 6 page

    The quantum Rabi model in a superfluid Bose-Einstein condensate

    Full text link
    We propose a quantum simulation of the quantum Rabi model in an atomic quantum dot, which is a single atom in a tight optical trap coupled to the quasiparticle modes of a superfluid Bose-Einstein condensate. This widely tunable setup allows to simulate the ultrastrong coupling regime of light-matter interaction in a system which enjoys an amenable characteristic timescale, paving the way for an experimental analysis of the transition between the Jaynes-Cummings and the quantum Rabi dynamics using cold-atom systems. Our scheme can be naturally extended to simulate multi-qubit quantum Rabi models. In particular, we discuss the appearance of effective two-qubit interactions due to phononic exchange, among other features.Comment: Improved version and references adde

    Radiation damage to nucleoprotein complexes in macromolecular crystallography

    Get PDF
    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein-DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07-44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N1-C and sugar-phosphate C-O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses

    Ultrahigh finesse Fabry-Perot superconducting resonator

    Get PDF
    We have built a microwave Fabry-Perot resonator made of diamond-machined copper mirrors coated with superconducting niobium. Its damping time (Tc = 130 ms at 51 GHz and 0.8 K) corresponds to a finesse of 4.6 x 109, the highest ever reached for a Fabry-Perot in any frequency range. This result opens novel perspectives for quantum information, decoherence and non-locality studies

    Quantum Search with Two-atom Collisions in Cavity QED

    Full text link
    We propose a scheme to implement two-qubit Grover's quantum search algorithm using Cavity Quantum Electrodynamics. Circular Rydberg atoms are used as quantum bits (qubits). They interact with the electromagnetic field of a non-resonant cavity . The quantum gate dynamics is provided by a cavity-assisted collision, robust against decoherence processes. We present the detailed procedure and analyze the experimental feasibility.Comment: 4 pages, 2 figure

    Autofeedback scheme for preservation of macroscopic coherence in microwave cavities

    Full text link
    We present a scheme for controlling the decoherence of a linear superposition of two coherent states with opposite phases in a high-Q microwave cavity, based on the injection of appropriately prepared ``probe'' and ``feedback'' Rydberg atoms, improving the one presented in [D. Vitali et al., Phys. Rev. Lett. 79, 2442 (1997)]. In the present scheme, the information transmission from the probe to the feedback atom is directly mediated by a second auxiliary cavity. The detection efficiency for the probe atom is no longer a critical parameter, and the decoherence time of the superposition state can be significantly increased using presently available technology.Comment: revtex, 15 pages, 4 eps figure

    Symmetric qubits from cavity states

    Full text link
    Two-mode cavities can be prepared in quantum states which represent symmetric multi-qubit states. However, the qubits are impossible to address individually and as such cannot be independently measured or otherwise manipulated. We propose two related schemes to coherently transfer the qubits which the cavity state represents onto individual atoms, so that the qubits can then be processed individually. In particular, our scheme can be combined with the quantum cloning scheme of Simon and coworkers [C. Simon et al, PRL 84, 2993 (2000)] to allow the optimal clones which their scheme produces to be spatially separated and individually utilized.Comment: 8 pages, 4 figures, minor typographical errors correcte

    Quantum computation with mesoscopic superposition states

    Get PDF
    We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.Comment: 9 pages, 5 Postscript and 1 Encapsulated Postscript figures. To be published in Phys. Rev.

    Several small Josephson junctions in a Resonant Cavity: Deviation from the Dicke Model

    Full text link
    We have studied quantum-mechanically a system of several small identical Josephson junctions in a lossless single-mode cavity for different initial states, under conditions such that the system is at resonance. This system is analogous to a collection of identical atoms in a cavity, which is described under appropriate conditions by the Dicke model. We find that our system can be well approximated by a reduced Hamiltonian consisting of two levels per junction. The reduced Hamiltonian is similar to the Dicke Hamiltonian, but contains an additional term resembling a dipole-dipole interaction between the junctions. This extra term arises when states outside the degenerate group are included via degenerate second-order (L\"{o}wdin) perturbation theory. As in the Dicke model, we find that, when N junctions are present in the cavity, the oscillation frequency due to the junction-cavity interaction is enhanced by N\sqrt{N}. The corresponding decrease in the Rabi oscillation period may cause it to be smaller than the decoherence time due to dissipation, making these oscillations observable. Finally, we find that the frequency enhancement survives even if the junctions differ slightly from one another, as expected in a realistic system.Comment: 11 pages. To be published in Phys. Rev.
    • …
    corecore