587 research outputs found
The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism
Additional file 2: Figure S2. Effects of EXE on Glut-4 in cultured L6 myotubes. Myotubes were stimulated with 100 nmol/l EXE for 20 min or 48 h. Panel A shows qPCR of Glut-4 mRNA. In panel B is a representative western blot for Glut-4 and β-Actin (loading control). In panel C is a representative western blot for Glut-4 and β-IR (loading control) in plasma membrane (PM) extracts (Glut-4 translocation). For A and C panels, data are shown as fold increase over control ± SD of three independent experiments (*p < 0.001, vs Ctrl)
The Destiny of Glucose from a MicroRNA Perspective
Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases
Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications
Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.„ Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications
Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation
Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges
A healthy diet improves life expectancy and helps to prevent common chronic diseases such as type 2 diabetes (T2D) and obesity. The mechanisms driving these effects are not fully understood, but are likely to involve epigenetics. Epigenetic mechanisms control gene expression, maintaining the DNA sequence, and therefore the full genomic information inherited from our parents, unchanged. An interesting feature of epigenetic changes lies in their dynamic nature and reversibility. Accordingly, they are susceptible to correction through targeted interventions. Here we will review the evidence supporting a role for nutritional factors in mediating metabolic disease risk through DNA methylation changes. Special emphasis will be placed on the potential of using DNA methylation traits as biomarkers to predict risk of obesity and T2D as well as on their response to dietary and pharmacological (epi-drug) interventions
High-fat diet unveils an enhancer element at the Ped/Pea-15 gene responsible for epigenetic memory in skeletal muscle
Background: The impact of nutrition on the evolution towards type 2 diabetes has recently received increasing attention because of the effect on chromatin structure and gene expression. Purpose: Evaluate the effect of high-fat diet on chromatin remodelling and expression of Ped/Pea-15, a gene commonly overexpressed in individuals at risk of type 2 diabetes.
Methods: We used mouse and cell models to investigate Ped/Pea-15 transcriptional regulation by high-fat diet and glucose, respectively. Chromatin structure and histone modification marks were assessed by Micrococcal Nuclease Protection and Chromatin Immunoprecipitation assays.
Results: Sixteen-week exposure of C57BL/6J mice to a high-fat diet impaired glucose tolerance and enhanced Ped/Pea-15 expression in their skeletal muscle tissue. This effect was associated with increased chromatin accessibility at specific regulatory sites at the Ped/Pea-15 gene. In particular, the region at -1900 to -1300 bp from Ped/Pea-15 transcription start site was revealed to feature enhancer activity as demonstrated by its function in the luciferase assay, increased p300 recruitment and H3K4mel and H3K27Ac levels, all marks of functionally active enhancers. Returning mice to a standard chow diet was accompanied by rapid loss of acetylation of K27 on histone H3 and p300 recruitment at Ped/Pea-15. In contrast, the increased H3K4mel, which accompanied the high-fat diet exposure, remained stable. Incubation of muscle cells in culture medium supplemented with 25 mM glucose (HG) increased Ped/Pea-1.5 mRNA expression and H3K4mel at the enhancer region. These effects became measurable upon 72 h of exposure to the HG medium and were not rescued upon returning the cells to the 5 mM glucose-containing medium. Interestingly, after 25 mM and sequential 5 mM glucose treatments, re-exposure of the same cells to HG medium further enhanced Ped/Pea-15 expression and increased H3K4mel above the levels induced by the initial HG challenge already upon 24 h.
Conclusion: Transient exposure to HFD or HG unveiled the presence of an enhancer element at the Ped/Pea-1.5 gene. Epigenetic changes imposed at this region by diets, which impair glucose tolerance generate metabolic memory of the nutritional injury and leave Ped/Pea-15 induction in a poised state. (C) 2018 Elsevier Inc. All rights reserved
DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment?
: Diabetes is a severe threat to global health. Almost 500 million people live with diabetes worldwide. Most of them have type 2 diabetes (T2D). T2D patients are at risk of developing severe and life-threatening complications, leading to an increased need for medical care and reduced quality of life. Improved care for people with T2D is essential. Actions aiming at identifying undiagnosed diabetes and at preventing diabetes in those at high risk are needed as well. To this end, biomarker discovery and validation of risk assessment for T2D are critical. Alterations of DNA methylation have recently helped to better understand T2D pathophysiology by explaining differences among endophenotypes of diabetic patients in tissues. Recent evidence further suggests that variations of DNA methylation might contribute to the risk of T2D even more significantly than genetic variability and might represent a valuable tool to predict T2D risk. In this review, we focus on recent information on the contribution of DNA methylation to the risk and the pathogenesis of T2D. We discuss the limitations of these studies and provide evidence supporting the potential for clinical application of DNA methylation marks to predict the risk and progression of T2D
The Transcription Factor <i>HOXA5</i>: Novel Insights into Metabolic Diseases and Adipose Tissue Dysfunction
The transcription factor HOXA5, from the HOX gene family, has long been studied due to its critical role in physiological activities in normal cells, such as organ development and body patterning, and pathological activities in cancer cells. Nonetheless, recent evidence supports the hypothesis of a role for HOXA5 in metabolic diseases, particularly in obesity and type 2 diabetes (T2D). In line with the current opinion that adipocyte and adipose tissue (AT) dysfunction belong to the group of primary defects in obesity, linking this condition to an increased risk of insulin resistance (IR) and T2D, the HOXA5 gene has been shown to regulate adipocyte function and AT remodeling both in humans and mice. Epigenetics adds complexity to HOXA5 gene regulation in metabolic diseases. Indeed, epigenetic mechanisms, specifically DNA methylation, influence the dynamic HOXA5 expression profile. In human AT, the DNA methylation profile at the HOXA5 gene is associated with hypertrophic obesity and an increased risk of developing T2D. Thus, an inappropriate HOXA5 gene expression may be a mechanism causing or maintaining an impaired AT function in obesity and potentially linking obesity to its associated disorders. In this review, we integrate the current evidence about the involvement of HOXA5 in regulating AT function, as well as its association with the pathogenesis of obesity and T2D. We also summarize the current knowledge on the role of DNA methylation in controlling HOXA5 expression. Moreover, considering the susceptibility of epigenetic changes to reversal through targeted interventions, we discuss the potential therapeutic value of targeting HOXA5 DNA methylation changes in the treatment of metabolic diseases
- …