47 research outputs found

    Post-emergence selectivity of metribuzin to carrot.

    Get PDF
    The objective of this study was to evaluate the selectivity of the herbicide metribuzin to carrot plants as a function of genotype, dose, and plant growth stage at the time of application. Two experiments were carried out, one in a greenhouse and another in the field

    YwdL in Bacillus cereus: Its Role in Germination and Exosporium Structure

    Get PDF
    In members of the Bacillus cereus group the outermost layer of the spore is the exosporium, which interacts with hosts and the environment. Efforts have been made to identify proteins of the exosporium but only a few have so far been characterised and their role in determining spore architecture and spore function is still poorly understood. We have characterised the exosporium protein, YwdL. ΔywdL spores have a more fragile exosporium, subject to damage on repeated freeze-thawing, although there is no evidence of altered resistance properties, and coats appear intact. Immunogold labelling and Western blotting with anti-YwdL antibodies identified YwdL to be located exclusively on the inner surface of the exosporium of B. cereus and B. thuringiensis. We conclude that YwdL is important for formation of a robust exosporium but is not required to maintain the crystalline assembly within the basal layer or for attachment of the hairy nap structure. ΔywdL spores are unable to germinate in response to CaDPA, and have altered germination properties, a phenotype that confirms the expected defect in localization of the cortex lytic enzyme CwlJ in the coat

    Collagen-Like Proteins in Pathogenic E. coli Strains

    Get PDF
    The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages

    Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence

    Get PDF
    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications
    corecore