407 research outputs found

    Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina

    Get PDF
    In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination

    Fiber Acoustic Waveguide : A Sensor Candidate

    Get PDF
    Sensor development plays a key role in the field of nondestructive evaluation and process control. The annual fiber optic sensor market alone is a multimillion dollar business (1). Acoustic waves are about five orders of magnitude slower than optical waves and can also be guided in cladded glass fibers, similar to optical fibers, with low loss and low dispersion (2–7). Fiber acoustic waveguides are believed to be a very attractive and basic component for further sensor development (8). In this paper a brief theoretical description of a weakly guiding acoustic fiber (7) is given. The material selection criteria for the core and the cladding of the fiber guide, the properties of single-mode operation, and some sensing mechanisms for temperature and pressure variations are discussed. The acoustic waveguide with a liquid core is also considered

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Optimising conditions for bioethanol production from rice husk and rice straw: effects of pre-treatment on liquor composition and fermentation inhibitors.

    Get PDF
    BACKGROUND: Rice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol. However, rice husk is reportedly much more recalcitrant than rice straw and produces larger quantities of fermentation inhibitors. The aim of this study was to explore the underlying differences between rice straw and rice husk with reference to the composition of the pre-treatment liquors and their impacts on saccharification and fermentation. This has been carried out by developing quantitative NMR screening methods. RESULTS: Air-dried rice husk and rice straw from the same cultivar were used as substrates. Carbohydrate compositions were similar, whereas lignin contents differed significantly (husk: 35.3% w/w of raw material; straw 22.1% w/w of raw material). Substrates were hydrothermally pre-treated with high-pressure microwave processing across a wide range of severities. 25 compounds were identified from the liquors of both pre-treated rice husk and rice straw. However, the quantities of compounds differed between the two substrates. Fermentation inhibitors such as 5-HMF and 2-FA were highest in husk liquors, and formic acid was higher in straw liquors. At a pre-treatment severity of 3.65, twice as much ethanol was produced from rice straw (14.22% dry weight of substrate) compared with the yield from rice husk (7.55% dry weight of substrate). Above severities of 5, fermentation was inhibited in both straw and husk. In addition to inhibitors, high levels of cellulase-inhibiting xylo-oligomers and xylose were found and at much higher concentrations in rice husk liquor. At low severities, organic acids and related intracellular metabolites were released into the liquor. CONCLUSIONS: Rice husk recalcitrance to saccharification is probably due to the much higher levels of lignin and, from other studies, likely high levels of silica. Therefore, if highly polluting chemical pre-treatments and multi-step biorefining processes are to be avoided, rice husk may need to be improved through selective breeding strategies, although more careful control of pre-treatment may be sufficient to reduce the levels of fermentation inhibitors, e.g. through steam explosion-induced volatilisation. For rice straw, pre-treating at severities of between 3.65 and 4.25 would give a glucose yield of between 37.5 and 40% (w/DW, dry weight of the substrate) close to the theoretical yield of 44.1% w/DW, and an insignificant yield of total inhibitors

    Category label and response location shifts in category learning

    Get PDF
    The category shift literature suggests that rule-based classification, an important form of explicit learning, is mediated by two separate learned associations: a stimulus-to-label association that associates stimuli and category labels, and a label-to-response association that associates category labels and responses. Three experiments investigate whether information–integration classification, an important form of implicit learning, is also mediated by two separate learned associations. Participants were trained on a rule-based or an information–integration categorization task and then the association between stimulus and category label, or between category label and response location was altered. For rule-based categories, and in line with previous research, breaking the association between stimulus and category label caused more interference than breaking the association between category label and response location. However, no differences in recovery rate emerged. For information–integration categories, breaking the association between stimulus and category label caused more interference and led to greater recovery than breaking the association between category label and response location. These results provide evidence that information–integration category learning is mediated by separate stimulus-to-label and label-to-response associations. Implications for the neurobiological basis of these two learned associations are discussed
    • …
    corecore