39 research outputs found

    Diet during early life defines testicular lipid content and sperm quality in adulthood

    Get PDF
    Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health but few studies addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into 3 groups and fed with different diet regimen for 200 days: CTRL-standard chow; HFD-high-fat diet (Carbohydrate: 35.7%, Protein: 20.5%, Fat: 36.0%); HFDt-high-fat diet for 60 days then replaced by standard chow. Biometric and metabolic data were monitored. Animals were then sacrificed, and tissues collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an over-accumulation of pro-inflammatory n-6 polyunsaturated fatty acids in testis, which are strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates to irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life

    Inherited Metabolic Memory of High-Fat Diet Impairs Testicular Fatty Acid Content and Sperm Parameters

    Get PDF
    Scope Exposure to a high-fat diet (HFD) from early-life is associated with a testicular metabolic signature link to abnormal sperm parameters up to two generations after exposure in mice. Hereby, this study describes a testicular lipid signature associate with "inherited metabolic memory" of exposure to HFD, persisting up to two generations in mice. Methods and Results Diet-challenged mice (n = 36) are randomly fed after weaning with standard chow (CTRL); HFD for 200 days or transient HFD (HFDt) (60 days of HFD + 140 days of standard chow). Subsequent generations (36 mice per generation) are fed with chow diet. Mice are euthanized 200 days post-weaning. Glucose homeostasis, serum hormones, testicular bioenergetics, and antioxidant enzyme activity are evaluated. Testicular lipid-related metabolites and fatty acids are characterized by H-1-NMR and GC-MS. Sons of HFD display impaired choline metabolism, mitochondrial activity, and antioxidant defenses, while grandsons show a shift in testicular omega 3/omega 6 ratio towards a pro-inflammatory environment. Grandsons of HFDt raise 3-hydroxybutyrate levels with possible implications to testicular insulin resistance. Sperm counts decrease in grandsons of HFD-exposed mice, regardless of the duration of exposure. Conclusion HFD-induced "inherited metabolic memory" alters testicular fatty acid metabolism with consequences to sperm parameters up to two generations

    Diet during early life defines testicular lipid content and sperm quality in adulthood

    Get PDF
    Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health, but few studies have addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism, leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into three groups and fed with a different diet regimen for 200 days: a standard chow diet (CTRL), a high-fat diet (HFD) (carbohydrate: 35.7%, protein: 20.5%, and fat: 36.0%), and a high-fat diet for 60 days, then replaced by standard chow (HFDt). Biometric and metabolic data were monitored. Animals were then euthanized, and tissues were collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with a high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an overaccumulation of proinflammatory n-6 polyunsaturated fatty acids in the testis, which is strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates with irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life

    Structural effects induced by dialysis-based purification of carbon nanomaterials

    Get PDF
    Dialysis plays a crucial role in the purification of nanomaterials but its impact on the structural properties of carbon nanomaterials was never investigated. Herein, a carbon-based nanomaterial generated electrochemically in potassium phosphate buffer, was characterized before and after dialysis against pure water. It is shown that dialysis affects the size of the carbon domains, structural organization, surface functionalization, oxidation degree of carbon, and grade of amorphicity. Accordingly, dialysis drives the nanomaterial organization from discrete roundish carbon domains, with sizes ranging from 70 to 160 nm, towards linear stacking structures of small nanoparticles (<15 ​nm). In parallel, alcohol and ether (epoxide) surface groups evolve into more oxidized carbon groups (e.g., ketone and ester groups). Investigation of the as-prepared nanomaterial by electron paramagnetic resonance (EPR) revealed a resonance signal consistent with carbon-oxygen centred radicals. Additionally, this study brings to light the selective affinity of the carbon nanomaterial under study to capture Na+ ions, a property greatly enhanced by the dialysis process, and its high ability to trap oxygen, particularly before dialysis. These findings open new perspectives for the application of carbon-based nanomaterials and raise awareness of the importance of structural changes that can occur during the purification of carbon-based nanomaterials

    Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored.</p> <p>Results</p> <p>In this study, we examined the effects of <it>in vitro </it>exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis.</p> <p>Conclusions</p> <p>This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.</p

    Dicationic Alkylammonium Bromide Gemini Surfactants. Membrane Perturbation and Skin Irritation

    Get PDF
    Dicationic alkylammonium bromide gemini surfactants represent a class of amphiphiles potentially effective as skin permeation enhancers. However, only a limited number of studies has been dedicated to the evaluation of the respective cytotoxicity, and none directed to skin irritation endpoints. Supported on a cell viability study, the cytotoxicity of gemini surfactants of variable tail and spacer length was assessed. For this purpose, keratinocyte cells from human skin (NCTC 2544 cell line), frequently used as a model for skin irritation, were employed. The impact of the different gemini surfactants on the permeability and morphology of model vesicles was additionally investigated by measuring the leakage of calcein fluorescent dye and analyzing the NMR spectra of 31P, respectively. Detail on the interaction of gemini molecules with model membranes was also provided by a systematic differential scanning calorimetry (DSC) and molecular dynamics (MD) simulation. An irreversible impact on the viability of the NCTC 2544 cell line was observed for gemini concentrations higher than 25 mM, while no cytotoxicity was found for any of the surfactants in a concentration range up to 10 mM. A higher cytotoxicity was also found for gemini surfactants presenting longer spacer and shorter tails. The same trend was obtained in the calorimetric and permeability studies, with the gemini of longest spacer promoting the highest degree of membrane destabilization. Additional structural and dynamical characterization of the various systems, obtained by 31P NMR and MD, provide some insight on the relationship between the architecture of gemini surfactants and the respective perturbation mechanism

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Phylogenetic reassessment of the Chaetomium globosum species complex

    Get PDF
    Chaetomium globosum, the type species of the genus, is ubiquitous, occurring on a wide variety of substrates, in air and in marine environments. This species is recognised as a cellulolytic and/or endophytic fungus. It is also known as a source of secondary metabolites with various biological activities, having great potential in the agricultural, medicinal and industrial fields. On the negative side, C. globosum has been reported as an air contaminant causing adverse health effects and as causal agent of human fungal infections. However, the taxonomic status of C. globosum is still poorly understood. The contemporary species concept for this fungus includes a broadly defined morphological diversity as well as a large number of synonymies with limited phylogenetic evidence. The aim of this study is, therefore, to resolve the phylogenetic limits of C. globosum s.str. and related species. Screening of isolates in the collections of the CBS-KNAW Fungal Biodiversity Centre (The Netherlands) and the China General Microbiological Culture Collection Centre (China) resulted in recognising 80 representative isolates of the C. globosum species complex. Thirty-six species are identified based on phylogenetic inference of six loci, supported by typical morphological characters, mainly ascospore shape. Of these, 12 species are newly described here. Additionally, C. cruentum, C. mollipilium, C. rectum, C. subterraneum and two varieties of C. globosum are synonymised under C. globosum s.str., and six species are resurrected, i.e. C. angustispirale, C. coarctatum, C. cochliodes, C. olivaceum, C. spiculipilium and C. subglobosum. Chaetomium ascotrichoides is segregated from C. madrasense and the genus name Chaetomidium is rejected. Five species, including C. globosum s.str., are typified here to stabilise their taxonomic status. A further evaluation of the six loci used in this study as potential barcodes indicated that the 28S large subunit (LSU) nrDNA and the internal transcribed spacer regions and intervening 5.8S nrRNA (ITS) gene regions were unreliable to resolve species, whereas β-tubulin (tub2) and RNA polymerase II second largest subunit (rpb2) showed the greatest promise as DNA barcodes for differentiating Chaetomium species. This study provides a starting point to establish a more robust classification system for Chaetomium and for the Chaetomiaceae
    corecore