28 research outputs found

    Methadone adverse reaction presenting with large increase in plasma methadone binding: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The use of methadone as an analgesic is on the increase, but it is widely recognized that the goal of predictable and reproducible dosing is confounded by considerable variability in methadone pharmacokinetics, and unpredictable side effects that include sedation, respiratory depression and cardiac arrhythmias. The mechanisms underlying these unpredictable effects are frequently unclear. Here, to the best of our knowledge we present the first report of an association between accidental methadone overexposure and increased plasma protein binding, a new potential mechanism for drug interactions with methadone.</p> <p>Case presentation</p> <p>We describe here the cases of two patients who experienced markedly different responses to the same dose of methadone during co-administration of letrozole. Both patients were post-menopausal Caucasian women who were among healthy volunteers participating in a clinical trial. Under the trial protocol both patients received 6 mg of intravenous methadone before and then after taking letrozole for seven days. One woman (aged 59) experienced symptoms consistent with opiate overexposure after the second dose of methadone that were reversed by naloxone, while the other (aged 49) did not. To understand the etiology of this event, we measured methadone pharmacokinetics in both patients. In our affected patient only, a fourfold to eightfold increase in methadone plasma concentrations after letrozole treatment was observed. Detailed pharmacokinetic analysis indicated no change in metabolism or renal elimination in our patient, but the percentage of unbound methadone in the plasma decreased 3.7-fold. As a result, the volume of distribution of methadone decreased approximately fourfold. The increased plasma binding in our affected patient was consistent with observed increases in plasma protein concentrations.</p> <p>Conclusions</p> <p>The marked increase in the total plasma methadone concentration observed in our patient, and the enhanced pharmacodynamic effect, appear primarily due to a reduced volume of distribution. The extent of plasma methadone binding may help to explain the unpredictability of its pharmacokinetics. Changes in volume of distribution due to plasma binding may represent important causes of clinically meaningful drug interactions.</p

    Contribution of Cytochrome P450 and ABCB1 Genetic Variability on Methadone Pharmacokinetics, Dose Requirements, and Response

    Get PDF
    Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements

    The time limit on copyright: an unlikely tragedy of the intellectual commons

    No full text
    With their “tragedy of the commons” paradigm for intellectual property, Landes and Posner argue that the most important benefit of intellectual property rights is not that they generate incentives to create new works, but that they ensure the efficient exploitation of existing intellectual works. This alternative economic case for IP notably relies on the argument that allowing the copyright on certain massively popular works to expire could lead to their overexploitation, generating negative externalities similar to congestion externalities. This article will assess in detail the plausibility of this effect, by reviewing its most plausible interpretations: a boredom effect, a “blurring” or “tarnishment” effect, a snob effect, or a decrease in product diversity. I will argue that while Landes and Posner’s argument is ultimately inconclusive and unverified by the current state of empirical research, it also raises greater challenges than has usually been thought. Moreover, taking their argument seriously can also contribute to a better understanding of the purposes and limits of an intellectual property regime
    corecore