37 research outputs found

    Post-Transcriptional Regulation of 5-Lipoxygenase mRNA Expression via Alternative Splicing and Nonsense-Mediated mRNA Decay

    Get PDF
    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC). The characterization of one of the splice variants, 5-LOΔ3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΔ3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression

    Copper-Triggered Aggregation of Ubiquitin

    Get PDF
    Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80∶20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing β-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis, and prion diseases, and have been proposed to be the primary toxic species. Susceptibility to aggregation of ubiquitin, as it emerges from the present study, may represent a potential risk factor for disease onset or progression while cells attempt to tag and process toxic substrates

    Phonemes:Lexical access and beyond

    Get PDF

    Carbon monoxide: from toxin to endogenous modulator of cardiovascular functions

    Get PDF
    Carbon monoxide (CO) is a pollutant commonly recognized for its toxicological attributes, including CNS and cardiovascular effects. But CO is also formed endogenously in mammalian tissues. Endogenously formed CO normally arises from heme degradation in a reaction catalyzed by heme oxygenase. While inhibitors of endogenous CO production can raise arterial pressure, heme loading can enhance CO production and lead to vasodepression. Both central and peripheral tissues possess heme oxygenases and generate CO from heme, but the inability of heme substrate to cross the blood brain barrier suggests the CNS heme-heme oxygenase-CO system may be independent of the periphery. In the CNS, CO apparently acts in the nucleus tractus solitarii (NTS) promoting changes in glutamatergic neurotransmission and lowering blood pressure. At the periphery, the heme-heme oxygenase-CO system can affect cardiovascular functions in a two-fold manner; specifically: 1) heme-derived CO generated within vascular smooth muscle (VSM) can promote vasodilation, but 2) its actions on the endothelium apparently can promote vasoconstriction. Thus, it seems reasonable that the CNS-, VSM- and endothelial-dependent actions of the heme-heme oxygenase-CO system may all affect cardiac output and vascular resistance, and subsequently blood pressure
    corecore