29 research outputs found

    Patterns of Hybrid Loss of Imprinting Reveal Tissue- and Cluster-Specific Regulation

    Get PDF
    Background: Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bw6po) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (PO6BW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include PO6BW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the PO6BW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. Methodology/Principal Findings: Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal PO6BW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. Conclusions/Significance: These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variatio

    RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse.

    Get PDF
    Paramutation is a heritable epigenetic modification induced in plants by cross-talk between allelic loci. Here we report a similar modification of the mouse Kit gene in the progeny of heterozygotes with the null mutant Kit(tm1Alf) (a lacZ insertion). In spite of a homozygous wild-type genotype, their offspring maintain, to a variable extent, the white spots characteristic of Kit mutant animals. Efficiently inherited from either male or female parents, the modified phenotype results from a decrease in Kit messenger RNA levels with the accumulation of non-polyadenylated RNA molecules of abnormal sizes. Sustained transcriptional activity at the postmeiotic stages--at which time the gene is normally silent--leads to the accumulation of RNA in spermatozoa. Microinjection into fertilized eggs either of total RNA from Kit(tm1Alf/+) heterozygotes or of Kit-specific microRNAs induced a heritable white tail phenotype. Our results identify an unexpected mode of epigenetic inheritance associated with the zygotic transfer of RNA molecules
    corecore