1,182 research outputs found

    Role of precombustion chamber design in feed-system coupled instabilities of hybrid rockets

    Get PDF
    Oxidizer feed-system coupled instabilities have been observed in several liquid and hybrid propellant rocket engines, although they are not likely to be catastrophic for the latter. However, severe pressure oscillation in hybrid rocket may result in a significant reduction in the performance of the propulsion system restricting the application of the technology. In this research, feed-system coupled instabilities were studied theoretically and experimentally for hybrid rocket engines. Two test campaigns were performed to investigate the effects of the precombustion chamber and oxidizer injector configurations on engine pressure oscillation. Then, an extended mathematical formulation (including the injector pressure drop, the precombustion chamber residence time, the gas residence time, and the combustion time lag) has been proposed. The investigation was based on a transfer function using the stability limit analysis and the root locus method. It has been found that the configuration of the precombustion chamber plays an important role in the nature of the feed-system coupled instabilities, and a correlation was proposed to predict the fundamental frequency based on the oxidizer precombustion chamber residence time. The work has shown that the precombustion chamber length and the oxidizer injection velocity are key parameters that affect the period of the pressure oscillations in hybrid engines subjected to feed-system coupled instabilities

    Mesophilic mineral-weathering bacteria inhabit the critical-zone of a perennially cold basaltic environment

    Get PDF
    The weathering of silicate in the world’s critical-zone (rock-soil interface) is a natural mechanism providing a feedback on atmospheric CO2 concentrations through the carbonate-silicate cycle. We examined culturable bacterial communities from a critical-zone in western Iceland to determine the optimum growth temperature, ability to solubilise phosphate-containing minerals, which are abundant within the critical-zone area examined here. The majority of isolated bacteria were able to solubilize mineral-state phosphate. Almost all bacterial isolates were mesophilic (growth optima of 20-45°C), despite critical-zone temperatures that were continuously below 15°C, although all isolates could grow at temperatures associated with the critical-zone (-2.8 – 13.1°C). Only three isolates were shown to have thermal optima for growth that were within temperatures experienced at the critical-zone. These findings show that the bacteria that inhabit the western Icelandic critical-zone have temperature growth optima suboptimally adapted to their environment, implying that other adaptations may be more important for their long-term persistence in this environment. Moreover, our study showed that the cold basaltic critical-zone is a region of active phosphate mineral-weathering

    Coexisting conical bipolar and equatorial outflows from a high-mass protostar

    Get PDF
    The BN/KL region in the Orion molecular cloud is an archetype in the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars, but it is difficult to study because of overlying dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars acrete gas from rotating equatorial disks, and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I; we show that within 60 AU (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU.Comment: 10 pages, 2 figures. Accepted by Nature. To appear December 199

    Gapless spin liquid in a square-kagome lattice antiferromagnet

    Get PDF
    Observation of a quantum spin liquid (QSL) state is one of the most important goals in condensed-matter physics, as well as the development of new spintronic devices that support next-generation industries. The QSL in two dimensional quantum spin systems is expected to be due to geometrical magnetic frustration, and thus a kagome-based lattice is the most probable playground for QSL. Here, we report the first experimental results of the QSL state on a square-kagome quantum antiferromagnet, KCu6AlBiO4(SO4)5Cl. Comprehensive experimental studies via magnetic susceptibility, magnetisation, heat capacity, muon spin relaxation (μSR), and inelastic neutron scattering (INS) measurements reveal the formation of a gapless QSL at very low temperatures close to the ground state. The QSL behavior cannot be explained fully by a frustrated Heisenberg model with nearest-neighbor exchange interactions, providing a theoretical challenge to unveil the nature of the QSL state. © 2020 Springer Nature Limite

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    A non-tight junction function of claudin-7—Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment

    Get PDF
    Background Claudins are a family of tight junction (TJ) membrane proteins involved in a broad spectrum of human diseases including cancer. Claudin-7 is a unique TJ membrane protein in that it has a strong basolateral membrane distribution in epithelial cells and in tissues. Therefore, this study aims to investigate the functional significance of this non-TJ localization of claudin-7 in human lung cancer cells. Methods Claudin-7 expression was suppressed or deleted by lentivirus shRNA or by targeted-gene deletion. Cell cycle analysis and antibody blocking methods were employed to assay cell proliferation and cell attachment, respectively. Electron microscopy and transepthelial electrical resistance measurement were performed to examine the TJ ultrastructure and barrier function. Co-immunolocalization and co-immunoprecipitation was used to study claudin-7 interaction with integrin β1. Tumor growth in vivo were analyzed using athymic nude mice. Results Claudin-7 co-localizes and forms a stable complex with integrin β1. Both suppressing claudin-7 expression by lentivirus shRNA in human lung cancer cells (KD cells) and deletion of claudin-7 in mouse lungs lead to the reduction in integrin β1 and phospho-FAK levels. Suppressing claudin-7 expression increases cell growth and cell cycle progression. More significantly, claudin-7 KD cells have severe defects in cell-matrix interactions and adhere poorly to culture plates with a remarkably reduced integrin β1 expression. When cultured on uncoated glass coverslips, claudin-7 KD cells grow on top of each other and form spheroids while the control cells adhere well and grow as a monolayer. Reintroducing claudin-7 reduces cell proliferation, upregulates integrin β1 expression and increases cell-matrix adhesion. Integrin β1 transfection partially rescues the cell attachment defect. When inoculated into nude mice, claudin-7 KD cells produced significantly larger tumors than control cells. Conclusion In this study, we identified a previously unrecognized function of claudin-7 in regulating cell proliferation and maintaining epithelial cell attachment through engaging integrin β1

    The performance of stochastic designs in wellbore drilling operations

    Get PDF
    © 2018, The Author(s). Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis—where the operating conditions are predicted by conventional modelling procedures—and then a probabilistic analysis via stochastic simulations—where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.Published versio

    Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan

    Get PDF
    BACKGROUND: On July 27 2003, a ship carrying crude oil run aground near Karachi and after two weeks released 37,000 tons of its cargo into the sea. Oil on the coastal areas and fumes in air raised health concerns among people. We assessed the immediate health impact of oil spill from the tanker Tasman Spirit on residents of the affected coastline in Karachi, Pakistan. METHODS: We conducted a study consisting of an exposed group including adults living in houses on the affected shoreline and two control groups (A and B) who lived at the distance of 2 km and 20 km away from the sea, respectively. We selected households through systematic sampling and interviewed an adult male and female in each household about symptoms relating to eyes, respiratory tract, skin and nervous system, smoking, allergies, beliefs about the effect on their health and anxiety about the health effects. We used logistic regression procedures to model each symptom as an outcome and the exposure status as an independent variable while adjusting for confounders. We also used linear regression procedure to assess the relationship exposure status with symptoms score; calculated by summation of all symptoms. RESULTS: Overall 400 subjects were interviewed (exposed, n = 216; group A, n = 83; and group B, n = 101). The exposed group reported a higher occurrence of one or more symptoms compared to either of the control groups (exposed, 96% vs. group A, 70%, group B 85%; P < 0.001). Mean summary symptom scores were higher among the exposed group (14.5) than control group A (4.5) and control group B (3.8, P < 0.001). Logistic regression models indicated that there were statistically significant, moderate-to-strong associations (Prevalence ORs (POR) ranging from 2.3 to 37.0) between the exposed group and the symptoms. There was a trend of decreasing symptom-specific PORs with increase in distance from the spill site. Multiple linear regression model revealed strong relationship of exposure status with the symptoms score (β = 8.24, 95% CI: 6.37 – 10.12). CONCLUSION: Results suggest that the occurrence of increased symptoms among the exposed group is more likely to be due to exposure to the crude oil spill
    corecore