4,644 research outputs found

    Delayed union of femoral fractures in older rats:decreased gene expression

    Get PDF
    BACKGROUND: Fracture healing slows with age. While 6-week-old rats regain normal bone biomechanics at 4 weeks after fracture, one-year-old rats require more than 26 weeks. The possible role of altered mRNA gene expression in this delayed union was studied. Closed mid-shaft femoral fractures were induced followed by euthanasia at 0 time (unfractured) or at 1, 2, 4 or 6 weeks after fracture in 6-week-old and 12-15-month-old Sprague-Dawley female rats. mRNA levels were measured for osteocalcin, type I collagen α1, type II collagen, bone morphogenetic protein (BMP)-2, BMP-4 and the type IA BMP receptor. RESULTS: For all of the genes studied, the mRNA levels increased in both age groups to a peak at one to two weeks after fracture. All gene expression levels decreased to very low or undetectable levels at four and six weeks after fracture for both age groups. At four weeks after fracture, the younger rats were healed radiographically, but not the older rats. CONCLUSIONS: (1) All genes studied were up-regulated by fracture in both age groups. Thus, the failure of the older rats to heal promptly was not due to the lack of expression of any of the studied genes. (2) The return of the mRNA gene expression to baseline values in the older rats prior to healing may contribute to their delayed union. (3) No genes were overly up-regulated in the older rats. The slower healing response of the older rats did not stimulate a negative-feedback increase in the mRNA expression of stimulatory cytokines

    Sum rules and three point functions

    Full text link
    Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two R-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.Comment: 41 page

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3

    Get PDF
    The tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB). Here, we present biochemical and physiological evidence that CymA interacts with menaquinol (MQH2) substrates. Fluorescence quench titration with the MQH2 analog, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), was used to demonstrate quinol binding of E. coli cytoplasmic membranes enriched with various forms of CymA. Wild-type CymA bound HOQNO with a Kd of 0.1–1 μM. It was also shown that the redox active MQH2 analog, 2,3-dimethoxy-1,4-naphthoquinone (DMNH2), could reduce CymA in cytoplasmic membrane preparations. Based on a CymA homology model made from the NrfH tetraheme cytochrome structure, it was predicted that Lys91 would be involved in CymA-quinol interactions. CymA with a K91Q substitution showed little interaction with HOQNO. In addition, DMNH2-dependent reduction of CymA-K91Q was diminished by 45% compared to wild-type CymA. A ΔcymA ANA-3 strain containing a plasmid copy of cymA-K91Q failed to grow with arsenate as an electron acceptor. These results suggest that Lys91 is physiologically important for arsenate respiration and support the hypothesis that CymA interacts with menaquinol resulting in the reduction of the cytochrome

    Participant Nonnaiveté and the reproducibility of cognitive psychology

    Get PDF
    Many argue that there is a reproducibility crisis in psychology. We investigated nine well-known effects from the cognitive psychology literature—three each from the domains of perception/action, memory, and language, respectively—and found that they are highly reproducible. Not only can they be reproduced in online environments, but they also can be reproduced with nonnaïve participants with no reduction of effect size. Apparently, some cognitive tasks are so constraining that they encapsulate behavior from external influences, such as testing situation and prior recent experience with the experiment to yield highly robust effects

    High Diversity of the Saliva Microbiome in Batwa Pygmies

    Get PDF
    We describe the saliva microbiome diversity in Batwa Pygmies, a former hunter-gatherer group from Uganda, using next-generation sequencing of partial 16S rRNA sequences. Microbial community diversity in the Batwa is significantly higher than in agricultural groups from Sierra Leone and the Democratic Republic of Congo. We found 40 microbial genera in the Batwa, which have previously not been described in the human oral cavity. The distinctive composition of the salvia microbiome of the Batwa may have been influenced by their recent different lifestyle and diet

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study

    Get PDF
    BACKGROUND: The time required for radiographic union following femoral fracture increases with age in both humans and rats for unknown reasons. Since abnormalities in fracture innervation will slow skeletal healing, we explored whether abnormal mRNA expression of genes related to nerve cell activity in the older rats was associated with the slowing of skeletal repair. METHODS: Simple, transverse, mid-shaft, femoral fractures with intramedullary rod fixation were induced in anaesthetized female Sprague-Dawley rats at 6, 26, and 52 weeks of age. At 0, 0.4, 1, 2, 4, and 6 weeks after fracture, a bony segment, one-third the length of the femur, centered on the fracture site, including the external callus, cortical bone, and marrow elements, was harvested. cRNA was prepared and hybridized to 54 Affymetrix U34A microarrays (3/age/time point). RESULTS: The mRNA levels of 62 genes related to neural function were affected by fracture. Of the total, 38 genes were altered by fracture to a similar extent at the three ages. In contrast, eight neural genes showed prolonged down-regulation in the older rats compared to the more rapid return to pre-fracture levels in younger rats. Seven genes were up-regulated by fracture more in the younger rats than in the older rats, while nine genes were up-regulated more in the older rats than in the younger. CONCLUSIONS: mRNA of 24 nerve-related genes responded differently to fracture in older rats compared to young rats. This differential expression may reflect altered cell function at the fracture site that may be causally related to the slowing of fracture healing with age or may be an effect of the delayed healing
    corecore