736 research outputs found
Spatially clustered count data provide more efficient search strategies in invasion biology and disease control.
Geographic profiling, a mathematical model originally developed in criminology, is increasingly being used in ecology and epidemiology. Geographic profiling boasts a wide range of applications, such as finding source populations of invasive species or breeding sites of vectors of infectious disease. The model provides a cost-effective approach for prioritising search strategies for source locations and does so via simple data in the form of the positions of each observation, such as individual sightings of invasive species or cases of a disease. In doing so, however, classic geographic profiling approaches fail to make the distinction between those areas containing observed absences and those areas where no data were recorded. Absence data are generated via spatial sampling protocols but are often discarded during the inference process. Here we construct a geographic profiling model that resolves these issues by making inferences via count data - analysing a set of discrete sentinel locations at which the number of encounters has been recorded. Crucially, in our model this number can be zero. We verify the ability of this new model to estimate source locations and other parameters of practical interest via a Bayesian power analysis. We also measure model performance via real-world data in which the model infers breeding locations of mosquitoes in bromeliads in Miami-Dade County, Florida. In both cases, our novel model produces more efficient search strategies by shifting focus from those areas containing observed absences to those with no data, an improvement over existing models that treat these areas equally. Our model makes important improvements upon classic geographic profiling methods, which will significantly enhance real-world efforts to develop conservation management plans and targeted interventions
Low temperature properties of holographic condensates
In the current work we study various models of holographic superconductors at
low temperature. Generically the zero temperature limit of those models are
solitonic solution with a zero sized horizon. Here we generalized simple
version of those zero temperature solutions to small but non-zero temperature
T. We confine ourselves to cases where near horizon geometry is AdS^4. At a
non-zero temperature a small horizon would form deep inside this AdS^4 which
does not disturb the UV physics. The resulting geometry may be matched with the
zero temperature solution at an intermediate length scale. We understand this
matching from separation of scales by setting up a perturbative expansion in
gauge potential. We have a better analytic control in abelian case and
quantities may be expressed in terms of hypergeometric function. From this we
calculate low temperature behavior of various quatities like entropy, charge
density and specific heat etc. We also calculate various energy gaps associated
with p-wave holographic superconductor to understand the underlying pairing
mechanism. The result deviates significantly from the corresponding weak
coupling BCS counterpart.Comment: 17 Page
Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa
The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur
Non-equilibrium Condensation Process in a Holographic Superconductor
We study the non-equilibrium condensation process in a holographic
superconductor. When the temperature T is smaller than a critical temperature
T_c, there are two black hole solutions, the Reissner-Nordstrom-AdS black hole
and a black hole with a scalar hair. In the boundary theory, they can be
regarded as the supercooled normal phase and the superconducting phase,
respectively. We consider perturbations on supercooled Reissner-Nordstrom-AdS
black holes and study their non-linear time evolution to know about physical
phenomena associated with rapidly-cooled superconductors. We find that, for
T<T_c, the initial perturbations grow exponentially and, eventually, spacetimes
approach the hairy black holes. We also clarify how the relaxation process from
a far-from-equilibrium state proceeds in the boundary theory by observing the
time dependence of the superconducting order parameter. Finally, we study the
time evolution of event and apparent horizons and discuss their correspondence
with the entropy of the boundary theory. Our result gives a first step toward
the holographic understanding of the non-equilibrium process in
superconductors.Comment: 20 pages, 7 figure
Cooper pairing near charged black holes
We show that a quartic contact interaction between charged fermions can lead
to Cooper pairing and a superconducting instability in the background of a
charged asymptotically Anti-de Sitter black hole. For a massless fermion we
obtain the zero mode analytically and compute the dependence of the critical
temperature T_c on the charge of the fermion. The instability we find occurs at
charges above a critical value, where the fermion dispersion relation near the
Fermi surface is linear. The critical temperature goes to zero as the marginal
Fermi liquid is approached, together with the density of states at the Fermi
surface. Besides the charge, the critical temperature is controlled by a four
point function of a fermionic operator in the dual strongly coupled field
theory.Comment: 1+33 pages, 4 figure
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
Quarkonium dissociation by anisotropy
We compute the screening length for quarkonium mesons moving through an
anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its
gravity dual. We present the results for arbitrary velocities and orientations
of the mesons, as well as for arbitrary values of the anisotropy. The
anisotropic screening length can be larger or smaller than the isotropic one,
and this depends on whether the comparison is made at equal temperatures or at
equal entropy densities. For generic motion we find that: (i) mesons dissociate
above a certain critical value of the anisotropy, even at zero temperature;
(ii) there is a limiting velocity for mesons in the plasma, even at zero
temperature; (iii) in the ultra-relativistic limit the screening length scales
as with \epsilon =1/2, in contrast with the isotropic result
\epsilon =1/4.Comment: 39 pages, 26 figures; v2: minor changes, added reference
Collective Excitations of Holographic Quantum Liquids in a Magnetic Field
We use holography to study N=4 supersymmetric SU(Nc) Yang-Mills theory in the
large-Nc and large-coupling limits coupled to a number Nf << Nc of
(n+1)-dimensional massless supersymmetric hypermultiplets in the Nc
representation of SU(Nc), with n=2,3. We introduce a temperature T, a baryon
number chemical potential mu, and a baryon number magnetic field B, and work in
a regime with mu >> T,\sqrt{B}. We study the collective excitations of these
holographic quantum liquids by computing the poles in the retarded Green's
function of the baryon number charge density operator and the associated peaks
in the spectral function. We focus on the evolution of the collective
excitations as we increase the frequency relative to T, i.e. the
hydrodynamic/collisionless crossover. We find that for all B, at low
frequencies the tallest peak in the spectral function is associated with
hydrodynamic charge diffusion. At high frequencies the tallest peak is
associated with a sound mode similar to the zero sound mode in the
collisionless regime of a Landau Fermi liquid. The sound mode has a gap
proportional to B, and as a result for intermediate frequencies and for B
sufficiently large compared to T the spectral function is strongly suppressed.
We find that the hydrodynamic/collisionless crossover occurs at a frequency
that is approximately B-independent.Comment: 45 pages, 8 png and 47 pdf images in 22 figure
- …