48 research outputs found

    The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production

    Get PDF
    Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described

    Flat Feet, Happy Feet? Comparison of the Dynamic Plantar Pressure Distribution and Static Medial Foot Geometry between Malawian and Dutch Adults

    Get PDF
    Contains fulltext : 118438.pdf (publisher's version ) (Open Access)In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints

    Prevalence, risk factors and genetic traits of Salmonella Infantis in Dutch broiler flocks

    No full text
    Salmonella Infantis is a poultry-adapted Salmonella enterica serovar that is increasingly reported in broilers and is also regularly identified among human salmonellosis cases. An emerging S. Infantis mega-plasmid (pESI), carrying fitness, virulence and antimicrobial resistance genes, is also increasingly found. We investigated the prevalence, genetic characteristics and risk factors for (pESI-carrying) S. Infantis in broilers. Faecal samples from 379 broiler flocks (in 198 farms with ≥3000 birds) in the Netherlands were tested. A questionnaire about farm characteristics was also administered. Sampling was performed in July 2018-May 2019, three weeks before slaughter. Fourteen flocks (in 10 farms) were S. Infantis-positive, resulting in a 3.7 % flock-level and 5.1 % farm-level prevalence. Based on multi-locus sequence typing (MLST), all isolates belonged to sequence type 32. All but one isolate carried a pESI-like mega-plasmid. Core-genome MLST showed considerable heterogeneity among the isolates, even within the same farm, with a few small clusters detected. The typical pESI-borne multi-resistance pattern to aminoglycosides, sulphonamide and tetracycline (93 %), as well as trimethoprim (71 %), was found. Additionally, resistance to (fluoro)quinolones based on gyrA gene mutations was detected. S. Infantis was found more often in flocks using salinomycin as coccidiostat, where flock thinning was applied or litter quality was poor, whereas employing external cleaning companies, wheat in feed, and vaccination against infectious bronchitis, were protective. Suggestive evidence for vertical transmission from hatcheries was found. A heterogeneous (pESI-carrying) S. Infantis population has established itself in Dutch broiler flocks, calling for further monitoring of its spread and a comprehensive appraisal of control options

    Rational drug design applied to myeloperoxidase inhibition

    No full text
    Rational drug design is a general approach using protein-structure technique in which the discovery of a ligand can be driven either by chance, screening, or rational theory. Myeloperoxidase (MPO) was rapidly identified as a therapeutical target because of its involvement in chronic inflammatory syndromes. In this context, the research of MPO inhibitors was intensified and development of new chemical entities was rationally driven by the research of ligands that enter into the MPO catalytic pocket. Actually, as soon as crystallography data of MPO have become available and its structure was virtually designed, the rational drug design has been applied to this peroxidase. Pharmaceutical industries and academic laboratories apply rational drug design on MPO by either optimizing known inhibitors or searching new molecules by high-throughput virtual screening. By these ways, they were able to find efficient MPO inhibitors and understand their interactions with the enzyme. During this quest of MPO inhibition, it appears that Glu268 is a crucial residue in order to optimize ligandtarget interaction. This amino acid should be carefully considered by medicinal chemist when they design inhibitors interfering with MPO activity.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore