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Abstract

Background: Secondary, phased small interfering RNAs (phasiRNAs) derived from protein-coding or noncoding loci
(PHAS) are emerging as a new type of regulators of gene expression in plants. However, the evolution and function
of these novel siRNAs in plant species remain largely unexplored.

Results: We systematically analyzed PHAS loci in 23 plant species covering major phylogenetic groups spanning alga,
moss, gymnosperm, basal angiosperm, monocot, and dicot. We identified over 3,300 PHAS loci, among which ~1,600
were protein-coding genes. Most of these PHAS loci were novel and clade- or species-specific and showed distinct
expression patterns in association with particular development stages, viral infection, or abiotic stresses. Unexpectedly,
numerous PHAS loci produced phasiRNAs from introns or exon–intron junction regions. Our comprehensive analysis
suggests that phasiRNAs predominantly regulate protein-coding genes from which they are derived and genes from
the same families of the phasiRNA-deriving genes, in contrast to the dominant trans-regulatory mode of miRNAs. The
stochastic occurrence of many PHAS loci in the plant kingdom suggests their young evolutionary origins.

Conclusions: Our study discovered an unprecedented diversity of protein-coding genes that produce phasiRNAs in a
wide variety of plants, and set a kingdom-wide foundation for investigating the novel roles of phasiRNAs in shaping
phenotype diversities of plants.
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Background
The workings of combinatorial genetic regulatory networks
control how an organism grows and develops as well as re-
sponds to biotic and abiotic stresses. Distinct regulatory
networks emerged during evolution likely have contributed
to the diversification of biological phenotypes. Investiga-
tions over the last decade from many different organisms
have uncovered the novel regulatory roles of numerous
small, noncoding RNAs. These include microRNAs
(miRNAs) and short interfering RNAs (siRNAs) that
exert epigenetic regulation of gene expression at the
transcriptional, posttranscriptional, and translational
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levels [1–3]. These discoveries have led to RNA-based
new paradigms of genetic regulatory networks that control
various biological processes including the emergence of
biological diversity [4–6].
In plants, miRNAs can trigger the generation of second-

ary, phased siRNAs (phasiRNAs) from protein-coding or
intergenic loci (PHAS) [7]. Some phased siRNAs can trans-
regulate the expression of target genes, and are called
trans-acting siRNAs (tasiRNAs or TAS) [8]. Early studies
with Arabidopsis thaliana provided genetic evidence sup-
porting that some tasiRNAs regulate gene expression
critical to plant development [9, 10], and it has been shown
that a deeply conserved TAS3 pathway is pivotal in devel-
opmental processes from moss to higher plants [11–14].
More recent studies showed the generation of phasiRNAs
from mRNAs that encode many nucleotide binding site
(NBS) and leucine-rich repeat (LRR) disease resistance pro-
teins in legumes [15, 16] and Solanaceae [17, 18]. Some
disease resistance gene-derived phasiRNAs have been
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shown to down-regulate the expression of genes in the
same family [19]. Besides NBS-LRR disease resistance pro-
teins, many other types of protein-coding genes have been
identified as PHAS loci in plants, such as MYB transcrip-
tion factors [16, 20, 21], pentatricopeptide repeat (PPR)
genes [16, 20, 22, 23], transporter inhibitor response
(TIR)/auxin F-box genes (AFB) [15, 22, 24, 25], and cal-
cium ATPase transporters [23, 26].
These findings suggest potentially broad roles of phasiR-

NAs in plant evolution and function, but many fundamen-
tal questions remain outstanding: (1) How widespread are
PHAS loci in the plant kingdom? (2) How many types of
protein-coding genes can function as PHAS loci in the
plant kingdom? (3) How conserved or unique are these
PHAS loci in different plants? (4) What categories of genes
do phasiRNAs regulate? and (5) What is the broad
spectrum of biological processes that may be associated
with or regulated by phasiRNA biogenesis? To address
these questions, we performed a systematic search of PHAS
loci in 23 plant species covering major phylogenetic groups
including alga, moss, gymnosperm, basal angiosperm,
monocot, and dicot as shown in Fig. 1. Our study uncov-
ered a wide range of novel PHAS loci from protein-coding
genes. Intriguingly, many phasiRNAs appear to be derived
from introns or intron-exon junctions. While some PHAS
loci occur broadly in plants, many are found in a limited
number of species. Production of phasiRNAs from protein-
coding genes is associated with developmental processes,
plant–virus interaction, and abiotic stresses, demonstrating
the highly dynamic nature of phasiRNA biogenesis regula-
tion. Our data provide the most comprehensive kingdom-
wide landscape to date of phasiRNA distribution and
Fig. 1 Plant species investigated in this study. These species belong to ma
of these species, shown in brackets, were used in the present study
potential regulatory function in plants, which will serve as
an important foundation for developing mechanistic studies
on the evolution, biogenesis, and function of these novel
siRNAs underlying many aspects of plant biology.

Results and discussion
A broad search for PHAS loci in different plant species
We collected deep small RNA (sRNA) sequences of 23
plant species spanning from green algae to angiosperm
groups from public resources (Fig. 1). These sRNAs were
generated from organs or tissues at different developmen-
tal stages or under various growth conditions. The major-
ity of the libraries contained 1–5 million high-quality
cleaned sRNA sequences [27–33] (Additional file 1). To
identify phasiRNA-generating loci, we aligned the sRNA
sequences to the corresponding genome and cDNA refer-
ence sequences (Additional file 2). Based on the align-
ments, we identified PHAS loci from the 23 species using
the method described in Xia et al. [23] (see Methods for
details). The phasiRNA-generating loci mapped to the
same protein-coding gene were further combined to
represent a unique locus.
In total, we found 3,339 PHAS loci in all the 23

species, including 3,306 that generated 21-nucleotides
(nt) and 33 that generated 24-nt phasiRNAs (Table 1).
The 24-nt phasiRNA-generating loci were found exclu-
sively in the grass family (Oryza rufipogon, Setaria italica,
and Sorghum bicolor), and all of them were mapped to
intergenic regions (Additional file 3). The number of
21-nt phasiRNA-generating loci in each plant group or
species varied greatly (Additional file 4: Figure S1).
Dicot species tended to have large numbers of PHAS
jor groups with well-established phylogeny. Three-letter abbreviations



Table 1 Summary of PHAS loci identified from various plant species

Species Protein-coding gene Intergenic Total

Exon Intron Exon-intron Subtotal

21-nt phasiRNA generating loci

Populus trichocarpa (poplar) 125 3 9 137 12 149

Citrus sinensis (sweet orange) 233 1 25 259 97 356

Arabidopsis lyrata 27 1 4 32 19 51

Arabidopsis thaliana 33 0 0 33 21 54

Carica papaya (papaya) 104 3 15 122 33 155

Vitis vinifera (grape) 132 24 77 233 123 356

Nicotiana tabacum (tobacco) 15 1 4 20 6 26

Solanum tuberosum (potato) 146 1 9 156 45 201

Solanum lycopersicum (tomato) 87 9 16 112 11 123

Mimulus guttatus (monkey flower) 16 0 2 18 22 40

Musa acuminata (banana) 18 0 5 23 6 29

Oryza sativa ssp. japonica (rice) 25 4 4 33 23 56

Oryza sativa ssp. indica (rice) 6 2 2 10 6 16

Oryza rufipogon (wild rice) 5 3 1 9 4 13

Panicum virgatum (switchgrass) 10 0 0 10 14 24

Setaria italica (foxtail millet) 16 1 1 18 898 916

Zea mays (maize) 21 0 1 22 239 261

Sorghum bicolor (sorghum) 40 2 6 48 19 67

Amborella trichopoda 19 2 2 23 42 65

Cycas rumphii 12 0 0 12 1 13

Ginkgo biloba 25 0 0 25 0 25

Physcomitrella patens 0 0 0 0 4 4

Volvox carteri 5 0 2 7 20 27

Chlamydomonas reinhardtii 126 34 49 209 70 279

24-nt phasiRNA generating loci

Oryza rufipogon (wild rice) 0 0 0 0 7 7

Setaria italica (foxtail millet) 0 0 0 0 23 23

Sorghum bicolor (sorghum) 0 0 0 0 3 3
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loci, with many species having more than 100. In
addition, approximately 75 % (1,122 out of 1,511 as
listed in Table 1) of the PHAS loci mapped to annotated
genic regions in all tested dicot species. The number of
PHAS loci in monocot plants ranged from 13 to more
than 900. In contrast to those in dicots, significantly
fewer PHAS loci were mapped to genic regions in
monocots. In a basal angiosperm species, Amborella
trichopoda, there were 67 phasiRNA-generating loci,
comparable to that in many dicot plants. In moss,
Physcomitrella patens, there were four PHAS loci. In
algae, Chlamydomonas reinhardtii had a comparable
number of PHAS loci as in many higher plants whereas
Volvox carteri generated phasiRNAs from only six loci.
The complete list of 21-nt phasiRNA-generating loci
is provided in Additional file 5. All the PHAS loci
identified in the present study are stored in an
interactive online database we developed [34]. The
database provides a set of query interfaces and tools
to analyze, visualize, and mine the phasiRNA data
presented in this study.

Conserved and unique PHAS loci from non-coding DNA
sequences
The non-coding TAS loci (TAS1, TAS2, TAS3, and
TAS4) were first identified in Arabidopsis thaliana.
miR173 is responsible for triggering TAS1 and TAS2,
which seems to be unique in A. thaliana [11, 35]. In
contrast, TAS3 and its cognate trigger miR390 were found
from moss to most of the land plants examined [12]. Our
searches in 23 plant species confirmed that TAS1 was
unique to A. thaliana, TAS2 could only be found in A.
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thaliana and A. lyrata, and TAS3 was present in many
land plant species.
The taxonomic distribution of TAS4 and its cog-

nate trigger miR828 was enigmatic. Previous studies
postulated that the miR828–TAS4 regulatory circuit
might exist only in Arabidopsis thaliana and a few
closely related species, but the possibility of a wider
distribution was proposed based on the presence of
miR828 and/or TAS4 homologs in several other
plant genomes [35]. Our searches identified bona
fide TAS4 loci based on the production of phasiR-
NAs in several dicot species, including poplar (Popu-
lus trichocarpa), sweet orange (Citrus sinensis), grape
(Vitis vinifera), tomato (Solanum lycopersicum), to-
bacco (Nicotiana tabacum), potato (S. tuberosum),
and monkey flower (Mimulus guttatus) (Additional
file 6). The miR828–TAS4 regulatory circuit was
suggested to play a role in trichome development in
A. thaliana [36] and apple [20], fiber growth in cot-
ton [36], flavonoid biogenesis in A. thaliana [37],
and perhaps fruit development in tomato [38]. In line
with previous reports [35], we did not detect the presence
of miR828 or TAS4-derived phasiRNAs in any of the
tested monocot species. Interestingly, although the
MIR828 gene could be found in the genomes of all test
species, its reads were only found in poplar and grape
sRNA libraries (both have miR828 reads below 5 RPM)
(Additional file 6), in contrast to the detection of
highly abundant miR828 in cotton [36]. It is possible
that the miR828 level was too low to be detected in
sRNA libraries from many plant species investigated in
this study.
Intriguingly, we found a miR828 homolog in the

basal angiosperm Amborella trichopoda (Additional
file 4: Figure S2A) based on the homology of mature
miRNA sequences. This miRNA was predicted to trigger
phasiRNA production from an intergenic region. It is
noteworthy that phasiRNA production triggered by
Atr-miR828 in Amborella trichopoda did not yield the
conserved D4(−) sequence (Additional file 4: Figure S2B)
that was found in Arabidopsis thaliana and many
other species [35]. Our current data are insufficient
to draw a conclusion about the phylogenetic relation-
ship between the miR828–PHAS regulatory circuit in
Amborella trichopoda and that in dicots, but raise the
interesting possibility that the Amborella trichopoda
circuit was a prototype that has stabilized and been
refined in dicots but been lost in monocots during
evolution.
Our searches uncovered many PHAS loci from non-

coding sequences from various species (Additional
files 3 and 5) and we did not analyze them in further
detail. Our subsequent analyses were devoted to PHAS
loci derived from protein-coding genes.
An expansive and diverse repertoire of PHAS loci
originated from protein-coding genes
Our analyses identified approximately 1,600 protein-
coding genes, belonging to 217 categories (Additional
file 7) based on their functional annotations, that serve
as PHAS loci in at least one species, significantly
expanding the list of 119 currently identified gene cat-
egories that can produce phasiRNAs (Additional file 8).
These PHAS loci cover a wide range of genes, which
include those encoding disease resistance and wound-
response proteins, hormone response factors, transcrip-
tion factors, RNA silencing components, proteins involved
in signal transduction, transporters, protein translation
machinery components, photosystem components, his-
tone and DNA methylation proteins, the cytoskeleton
and associated factors, intracellular trafficking machin-
ery, kinases, and other enzymes involved in diverse
metabolic pathways. (Additional file 7). Transcription
factors and kinases were also found to function as PHAS
loci in soybean [16].
When the total number of PHAS loci from leaves of

land plants was compared, some interesting patterns
emerged (Additional file 4: Figure S3 and Additional
file 9). The eudicots and basal angiosperm Amborella
trichopoda had relatively higher numbers of PHAS loci
than monocots. Among eudicots, sweet orange had the
largest number of PHAS categories from the annotated
gene loci in leaves. Grapevine and poplar also had a
large number of PHAS loci from annotated gene loci
in leaves. Closely related species may have different
protein-coding PHAS loci enriched. For example, PPR-
containing protein genes were the dominant PHAS
loci in Arabidopsis thaliana leaves, whereas TIR-NBS-
LRR class disease resistance genes were the most
enriched in Arabidopsis lyrata leaves.
Disease resistance genes, including NBS-LRR genes,

constitute the most conserved group of PHAS loci, con-
firming and expanding previous reports [15, 16, 23]. Our
extensive search found phasiRNAs produced from NBS-
LRR genes in gymnosperms, the basal angiosperm
Amborella trichopoda and monocots, although much
less than in dicots (Additional files 5 and 7). Thus, dis-
ease resistance genes evolved as PHAS loci in early seed
plants but were strongly selected for in dicot plants. Ex-
pression of R genes constitutes a high cost for plants
[39]. Infection of several viruses and a bacterium which
encode silencing suppressors led to down-regulated ex-
pression of miRNAs and siRNAs that trigger phasiRNAs
from R genes [18], leading to the hypothesis that repressed
expression of R genes by phasiRNAs under non-infection
conditions functions to minimize the costs for plants
[17, 18] and that viral or bacterial suppressor-induced
expression of R genes enables or enhances plant defense
responses during infection [18]. The wide taxonomic
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distribution of disease resistance genes as PHAS loci in
our analysis lends further support to this hypothesis.
While some PHAS loci, such as disease resistance genes

and Myb domain-containing genes, were widespread
among the plants we examined, most loci were found in
only a few species or just one single species. For example, a
squamosal promoter-binding protein gene served as a
PHAS locus only in grapevine though this gene family is a
conserved target of miR156 in many plants. The stochastic
occurrence of many PHAS loci in the plant kingdom sug-
gests their young evolutionary origins and the existence of
yet-to-be identified biogenesis factors. This, together with
the diversity of protein-coding genes acting as PHAS loci,
suggests phasiRNAs as the fastest-evolving riboregulators
to regulate the expression of continuously expanding
numbers and types of protein-coding genes. As such, this
regulation may be an important contributor to the diversifi-
cation of certain plant phenotypes.

Broad taxonomic distribution of RNA silencing machinery
components as PHAS loci
PhasiRNAs can be generated from RNA silencing machin-
ery components, including DICER-LIKE (DCL)s and SUP-
PRESSOR OF GENE SILENCING 3 (SGS3) in Medicago
truncatula [15], peach [23], and soybean [16], as well as
ARGONAUTE2 (AGO2) in peach [23], and soybean [16]. We
found SGS3 to be a PHAS locus in leaf and cone samples of
the two gymnosperm species examined (Cycas rumphii and
Gingko biloba) and in leaf and fruit samples of grape. Interest-
ingly, Arabidopsis thaliana SGS3 did not produce any siR-
NAs. We also observed DCL-derived 21-nt phasiRNAs
from papaya, sweet orange, tomato, and tobacco, AGO-
derived 21-nt phasiRNAs from A. thaliana, A. lyrata,
monkey flower, tomato and sorghum, and RNA-
DEPENDENT RNA POLYMERASE (RDR)-derived 21-nt
phasiRNAs from foxtail millet and Amborella tricho-
poda. These new observations, together with earlier re-
ports [15, 16, 23], support the notion that phasiRNAs
generated from RNA silencing machinery genes may
function in a feedback mechanism to regulate the ex-
pression of these genes [15], and that this mechanism
may be widespread in plants.

Novel biogenesis of phasiRNAs from introns or
exon-intron junctions
The noncoding TAS2 locus in Arabidopsis thaliana
produces siRNAs from an alternative transcript that
retained an intron [40]. In the present study, we found a
large number of protein-coding genes that generate
phasiRNAs from annotated introns alone (Additional file
10) or intron–exon junctions (Additional file 11) in
many plant species. For example, we found that phasiRNA
production from the SGS3 locus in grape progressed
from an exon into an adjacent intron (Additional file 4:
Figure S4A). In addition, a serine/threonine protein kinase
gene produced phasiRNAs only from its second intron
(Additional file 4: Figure S4B). In total, we identified
107 PHAS loci producing phasiRNAs only from anno-
tated introns and 157 loci producing phasiRNAs from
intron–exon junctions. To validate intron annotations,
we used GBrowser in the Phytozome [41], Solgenomics
[42], and Amborella genome [43] databases to examine
expressed sequence tag and/or RNA-sequencing (RNA-
Seq) data for these PHAS loci. The data validated anno-
tations for approximately one third (34 out of 107) of
the intron-only and one fourth (37 out of 157) of the
intron–exon junction PHAS loci (Additional files 10
and 11). Intriguingly, the majority of PHAS loci that
generated phasiRNAs from introns or intron–exon
junctions were disease resistance genes (Additional file 4:
Figure S5, and Additional files 10 and 11).
An outstanding question is whether phasiRNAs from the

intron-only PHAS loci are generated from free-standing in-
trons or from alternatively spliced or aberrant transcripts.
We addressed this question by analyzing the published to-
mato dataset that contains RNA-seq and sRNA data from
the same samples [44]. We found three annotated intron re-
gions that generated phasiRNAs but had no RNA-seq cover-
age, indicating that they are bona fide introns. An example is
shown in Fig. 2a. We also found 11 annotated intron re-
gions, which generated phasiRNAs with good RNA-seq
coverage, indicating that they are retained in the alternatively
spliced transcripts (an example is shown in Fig. 2b). These
data provide experimental evidence that free-standing
introns or introns retained in the alternatively spliced tran-
scripts can indeed be the direct sources of phasiRNAs.
It remains unclear whether the phasiRNAs from

free-standing introns are generated via the conven-
tional phasiRNA biogenesis pathway where a miRNA
trigger functions in the cytoplasm or via a novel path-
way operating in the nucleus. Regardless of the specific
pathway(s), our findings revealed an unexpected link
among mRNA splicing, mRNA stability, and phasiRNA
regulation. This might represent a new mechanism of
removing aberrant (i.e., unspliced or incorrectly spliced)
RNA transcripts that escape the nucleus to accumulate in
the cytoplasm. Alternatively, phasiRNA biogenesis from
introns and/or intron–exon junctions of certain loci may
function to regulate pre-mRNA stability or other aspects
of gene expression.

Unique developmental regulation of PHAS expression in
different plants
Comprehensive analysis of phasiRNAs in soybean identi-
fied a number of tissue-specific PHAS loci [16]. Most
plant species we analyzed had sRNA libraries prepared
from different organs and/or from various developmental
stages, thereby allowing examination of the developmental



Fig. 2 (See legend on next page.)
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Fig. 2 PhasiRNAs generated from introns in tomato. Examples of a PHAS locus (Sly015) that generates phasiRNAs from a bona fide intron (a) and
a PHAS locus (Sly110) that generates phasiRNAs from an alternatively retained intron (b). RNA-seq and sRNA reads were derived from the same
organ (fruit at the breaker stage or 42 days after pollination) and mapped to the tomato genome. For sRNA mapping, red depicts reads aligned
in forward orientation and blue in reverse orientation. EST expressed sequence tag
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significance of phasiRNA generation among different
taxonomic groups. It is worth noting that sRNA libraries
we used for comparative analysis for a given plant were all
derived from the same genotype and generated by the
same laboratory, and have been used to explore the wide-
spread conservation and divergence of microRNAs in
plants [33]. Our analyses showed that many protein-
coding genes that acted as PHAS loci in one organ did not
produce any siRNAs or produced only abundant non-
phased siRNAs in another organ(s) of the same species
(Additional file 12). For example, genes encoding NAC
domain-containing transcription factors were an obvious
cluster in producing phasiRNAs in fruits but much less
in leaves and flowers of sweet orange (Additional file 4:
Figure S6), implying their unique roles in regulating
sweet orange fruit development.
All tested monocot plants possessed very few loci for

generating 21-nt phasiRNAs in non-reproductive organs
such as leaf, shoot, and root. For species in the grass family,
there was a drastic induction of the PHAS loci in certain re-
productive organs, such as the flower of foxtail millet, ear
and tassel of maize (Zea mays), and panicle of sorghum.
Furthermore, most of these PHAS loci were in the inter-
genic regions as shown in Fig. 3 and Additional file 12.
Fig. 3 Number of PHAS loci identified in different organs of representative
Notably, wild rice had five PHAS loci producing pha-
siRNAs only in the seeds, but no siRNAs in the shoots
or roots. Among these five loci, a phosphoinositide
phosphatase family gene and a nuclear factor Y gene
produced 20-fold more phasiRNAs than those generated
by a deeply conserved noncoding PHAS (TAS3). Thus,
the regulatory roles of these two loci may help us under-
stand the function of protein-coding transcript-derived
phasiRNAs in cereal development.
These observations, together with the findings from

Arikit et al. [16], indicate that PHAS-based gene regula-
tions are unique in different organs in a wide range of
plants. Interestingly, organ-specific PHAS loci did not
exhibit any general conservation among different plant
species. Whether this may contribute to the develop-
ment of distinct phenotypes in different plants remains
an outstanding question.
It should be noted that the datasets we have analyzed

for land plants were mostly derived from whole plant
organs. A recent study reported phasiRNAs in maize
anther and pollen at different developmental stages,
providing deeper insights into phasiRNA biogenesis at
the tissue-specific level [45]. Thus, future studies to
analyze tissue- or even cell-specific expression patterns
species in the grass family



Zheng et al. BMC Biology  (2015) 13:32 Page 8 of 15
of phasiRNAs in different plants should shed new light
on the functions of phasiRNAs in plant development
processes.

Viral infection induces or suppresses a diverse array of
PHAS loci
Some miRNAs act as master regulators to initiate the
generation of phasiRNAs from mRNAs that encode
NBS-LRR disease resistance proteins in legumes [15, 16]
and solanaceous plants [17, 18]. Viral and bacterial in-
fection represses the expression of miRNA triggers and
consequently also phasiRNAs from some resistance gene
loci [17, 18]. To gain further insight into the potential
role of phasiRNAs in plant–microbe interactions, we an-
alyzed the global expression patterns of phasiRNAs in
several virus–plant systems. Specifically, we examined
phasiRNA profiles in healthy and Papaya ringspot virus
(PRSV)-infected leaves of papaya (Carica papaya) [33],
healthy and Turnip mosaic virus-infected leaves of Ara-
bidopsis thaliana [29], as well as healthy and Rice stripe
virus (RSV)- and Rice dwarf virus (RDV)-infected shoots
of rice (O. sativa L. ssp. Japonica) [31] (see Additional
file 1 for the source of sRNA data).
In the papaya system, 40 and 93 PHAS loci were found

in healthy and infected leaf libraries, respectively; among
them, 13 were shared while many exhibited different ex-
pression patterns (Additional file 13). Six disease resist-
ance PHAS loci showed reduced production of 21-nt
siRNAs upon PRSV infection (13, 24, 33, 36, 62, and
87 %, respectively, of that in the healthy leaves). Five of
them became non-PHAS loci in the infected leaves
(Fig. 4b and Additional file 13). Furthermore, three out
of four PHAS loci derived from auxin-signaling genes in
the healthy leaves also became non-PHAS loci in the in-
fected leaves: ARF3 had the highest degree of total
siRNA reduction in infected leaves and two auxin-
signaling F-box genes (AFB2 and TIR1/AFB) produced
four times less siRNAs in infected leaves (Fig. 4c and
Additional file 13).
Similarly in the rice and Arabidopsis systems, a large

number of PHAS loci showed substantial changes in
phasiRNA generation upon infection by different viruses
(Additional file 13). It is noteworthy that an auxin
response factor (ARF) gene in rice showed more than
8- and 3.5-fold changes in phasiRNA generation upon
RSV and RDV infections, respectively.
While the repressed expression of some PHAS loci in

the infected leaves was consistent with earlier reports in
Solanaceae and Fabaceae [15–18], our analyses identified
many novel PHAS loci induced by PRSV infection.
These could be clustered into several groups based
on their gene functions: cytoskeleton-related genes,
chloroplast-related genes, cell wall-related genes, trans-
porter genes, and hormone-signaling genes (Additional
file 13). As an example, a SAUR-like ARF increased siRNA
production by more than eight-fold and became a PHAS
locus in infected leaves (Fig. 4c). Furthermore, two
ethylene-responsive transcription factor genes were highly
induced as PHAS loci in response to viral infection
(Fig. 4d). Induced expression of these PHAS loci may
function as part of the coordinated plant defense re-
sponses, by reducing metabolic activities to dampen
viral replication. Many studies have reported up- or
down-regulated expression of host genes during viral
infection, with many types of genes appearing to be
commonly affected in different host–virus systems
[46–50]. The underlying molecular mechanisms are
largely unknown. We suggest that viral infection-
induced or suppressed expression of selective phasiR-
NAs may act as a novel mechanism to regulate the
expression of selective host genes.

Nutrient stresses modulate phasiRNA biogenesis in algae
Previous reports showed the presence of phasiRNAs in
unicellular alga C. reinhardtii, mainly mapped to inter-
genic regions [51, 52]. In the present study, we identified
more than 300 PHAS loci in this alga, of which approxi-
mately 240 were mapped to protein-coding genes. Among
the protein-coding PHAS loci, nine were uniquely induced
by sulfate starvation, five were uniquely induced by phos-
phate starvation, and one was induced by both treatments.
On the other hand, six protein-coding PHAS loci were
suppressed by both treatments, and four were uniquely
suppressed by sulfate treatment (Additional file 4:
Figure S7 and Additional file 14). It is noteworthy that
there was no unique PHAS locus suppressed by phos-
phate starvation.
The biological implications of these changes in PHAS

activities remain to be understood, but the suppressed
expression of transposon-polyprotein loci is of notable
interest. In C. reinhardtii, a DCL1 homolog has been
shown to repress retrotransposon activity [53]. However,
the underlying molecular mechanism is unknown. In
the case of REM1 Ty3-gypsy retrotransposon silencing,
retrotransposon-derived siRNAs were postulated to be
derived from double-stranded RNAs formed via a
transposon polyprotein gene and its adjacent inverse
transcripts [54]. However, we did not find evidence for
the existence of such adjacent inverse transcripts that
would contribute to the production of any siRNAs.
Thus, phasiRNA-mediated retrotransposon silencing
by phasiRNAs derived from the coding transcripts
within the retrotransposon itself may be a novel mechanism
underlying the retrotransposon silencing phenomenon in
C. reinhardtii.
The multicellular alga V. carteri had much fewer

PHAS loci. We found only one protein-coding PHAS
locus in this alga growing under normal conditions. In



Fig. 4 siRNA production from various PHAS loci upon viral infection. a Pie diagram showing the PHAS loci with more than five-fold changes in
total 21-nt siRNA production in papaya leaves infected by Papaya ringspot virus as compared to that in healthy leaves. The number of PHAS locus
or loci for each gene category showing induced or suppressed expression is indicated. b–d Specific examples of PHAS loci derived from
disease-resistant genes (b), auxin-related genes (c), and ethylene-responsive transcription factor genes (d), which showed differential
expression of siRNAs in healthy and infected leaves
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contrast, five and one new protein-coding PHAS loci
emerged under sulfate and phosphate starvation condi-
tions, respectively.
Our analysis suggested that algae can respond to dif-
ferent abiotic stresses by differential gene expression
modulated by phasiRNA biogenesis. In soybean, drought
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stress induced the expression of phasiRNAs from a
protein-coding gene, ALLENE OXIDE SYNTHASE [16].
Future studies will determine whether dynamic changes
in phasiRNA biogenesis may occur broadly in land
plants in response to nutrient and other abiotic stresses.

sRNA triggers for phasiRNA biogenesis
We predicted sRNA triggers for PHAS loci mainly based
on sequence complementarity (see Methods for details).
We noticed that a large number of predicted triggers
have a putative guided cleavage site falling out of the
N × 21 bp phase windows (where N is an integer) to the
positions of phasiRNAs. We discarded these out-of-
phase triggers if they were not confirmed previously by
other studies or not supported by the sPARTA [55] ana-
lysis described below. In total we could predict triggers
for approximately 10 % of the PHAS loci we identified in
this study (Additional files 15 and 16). Among these, we
could find 170 miRNA triggers, among which 135 were
known miRNAs (with 32 distinct sequences) and 35 pu-
tative miRNAs (with 21 distinct sequences) (Additional
file 16). There are six species with available sequencing
data from degradome libraries from similar sample
sources/organs (Additional file 1). We used these data to
test our trigger prediction with sPARTA [55]. The results
are summarized in Additional file 16. For 41 triggers
(4 in Arabidopsis thaliana, 4 in rice, 16 in tomato, 10 in
grape, and 7 in Amborella trichopoda), the predicted
cleavage sites were validated by degradome libraries. We
could not validate any in P. patens, which may be attrib-
uted to the different sources for degradome and sRNA
libraries. Further experimental studies are necessary to
validate the remaining triggers.
sRNA triggers may work via the two-hit model (221),

in which two sites of the transcript are recognized by
the same sRNA [11] or two different sRNAs [13, 15, 56],
or via the one-hit model (122), in which a single 22-nt
sRNA directs the cleavage of the target [6, 15, 17, 18,
26]. The numbers for the predicted 21-nt and 22-nt
sRNA triggers at 5′- and 3′-ends are summarized in
Additional file 15. There were many cases in which we
only found one 21-nt trigger at either 5′- or 3′-end,
which may have been due to the limit of the algorithm
in identifying imperfect alignments of sRNAs and
targets.
Disease resistance genes are targeted by the miR482/

miR2118 superfamily in generating phasiRNAs [18].
Other miRNA triggers, such as miR6024, miR6025,
miR6027, and miR472, have also been reported [17, 19].
We found these miRNAs as triggers in various species.
In addition, we predicted that miR3623 in grape was
also involved in regulating phasiRNA production from
disease resistance genes. Whether this suggests parallel
evolution of species-specific regulators or suggests
miR3623 as a relative or member of the miR482/
miR2118 superfamily awaits further analysis. For NAC
domain transcription factors, the predicted trigger was
miR7122 in sweet orange but miR6445 in poplar. The
evolutionary relationship between the MIR7122 gene
and MIR6445 gene also remains unknown.
These observations show that an orthologous protein-

coding gene in different plant species may be targeted
by different miRNAs to produce phasiRNAs. However,
because various miRNA triggers for phasiRNA biogen-
esis may have their own distinct expression patterns, an
orthologous protein-coding gene may serve as a PHAS
locus in distinct spatial-temporal manners in various
species. For example, NAC domain transcription factor
genes were enriched PHAS loci in the fruit sample in
sweet orange and in the xylem sample from wood trunk
in poplar. These observations reveal the highly complex
evolutionary and functional regulatory networks of miR-
NAs and phasiRNAs.

Predicted target genes of phasiRNAs
We also predicted the downstream targets for phasiR-
NAs present with more than 10 RPM in a given library
(Additional file 17). It was evident that nearly all phasiR-
NAs had near-perfect matches to the genes in the same
family as their originating loci. Interestingly, a recent re-
port by Boccara et al. [19] showed that phasiRNAs de-
rived from disease resistance genes negatively regulate a
broad spectrum of disease resistance genes in Arabidop-
sis thaliana.
Our analyses identified some phasiRNAs that may tar-

get genes outside the gene families of their originating
loci. In most species, such potentially trans-regulatory
phasiRNAs accounted for only a small percentage of the
total phasiRNAs, generally less than 10 % with excep-
tions when a stringent cut-off score (1.5) was used for
target prediction. Thus, in contrast to the dominant
trans-regulatory mode of miRNAs [6], our analysis sug-
gests that phasiRNAs predominantly regulate protein-
coding genes from which they are derived and genes in
the same families of phasiRNA-generating genes. As dis-
cussed earlier, many PHAS loci may be of recent evolu-
tionary origin given their stochastic occurrence in
plants, superficially similar to the origin of young miR-
NAs. However, unlike the majority of young miRNAs
that do not have predicted target genes and are therefore
likely function-neutral [6], phasiRNAs are all likely func-
tional because they may target at least the genes from
which they are originated.

Evolution of the phasiRNA biogenesis machinery
The stochastic presence of many PHAS loci in the spe-
cies we analyzed raised questions concerning the conser-
vation of their biogenesis machinery. Studies on the
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model plant Arabidopsis thaliana demonstrated that the
generation of 21-nt phasiRNAs involves the coordinated
actions of protein factors DCL4, AGO7, RDR6, and
SGS3, in addition to the core players for miRNA biogen-
esis and function such as DCL1 and AGO1 [7]. Assum-
ing this is an essential set of proteins for phasiRNA
biogenesis in any plant, we determined their presence in
different plants by searching the available genome se-
quences of 41 species, covering algae, mosses, monocots,
and dicots. Gymnosperm plants were not included for
lack of full genome sequences.
Our extensive search revealed that all proteins cur-

rently known to be specifically required for phasiRNA
biogenesis were present in all of the tested land plants,
from moss to higher plants. None of the algae species,
single cellular or multicellular, had the complete set of
SGS3, RDRs, DCLs, and AGOs. Among algae, only C.
reinhardtii and V. carteri had dicer-like protein factors
as shown in Fig. 5. Our search results match previous
reports in several plant species including algae species
[57], rice [58], maize [59], and tomato [60].
Thus, our results suggest that the currently known

phasiRNA biogenesis pathway(s) has evolved only in
land plants. These observations raise questions for fu-
ture investigations: (1) what factors contribute to the
stochastic evolution and activity of PHAS loci in differ-
ent plant species, different developmental stages, and
under different biotic and abiotic stress conditions; and
(2) what machinery is responsible for the biogenesis of
phasiRNAs in algae?

Conclusions
Our extensive search across 23 different plant species
uncovered a large and surprisingly diverse repertoire of
Fig. 5 Summary of key protein factors involved in phasiRNA biogenesis in
investigated for phasiRNA production in this study. The numbers listed indi
biogenesis genes
protein-coding genes as novel PHAS loci. Biogenesis of
phasiRNAs from many loci is uniquely associated with
speciation, development, viral infection, or nutrient
stresses. Numerous PHAS loci produced phasiRNAs
from intron or exon–intron junction regions, revealing
an unexpected link between phasiRNA biogenesis and
RNA splicing. Our analysis suggests that phasiRNAs
predominantly regulate protein-coding genes from which
they are derived and genes in the same families of
phasiRNA-generating genes, in contrast to the dominant
trans-regulatory mode of miRNAs. Interestingly, while
dicot PHAS loci appear to play an overwhelming role in
disease resistance, monocot PHAS loci are mostly associ-
ated with reproductive growth.
The PHAS loci derived from protein-coding genes

may be considered an evolutionary novelty in that
these PHAS loci possess an added regulatory function
specific to some plant species rather than a replace-
ment of the original function of protein-coding genes
for these loci. The stochastic occurrence of PHAS loci
in the plant kingdom suggests their young evolutionary
origins. The evolutionary flux that leads to high varia-
tions for a given locus among species or taxonomic
groups suggests that phasiRNA networks may contrib-
ute to plant phenotype diversity by regulating distinct
developmental processes or responses to biotic or abi-
otic stimuli.
In summary, our new findings, together with an in-

teractive database developed, significantly expand pre-
vious findings and will help build a critical foundation
to advance further studies on how phasiRNAs may
have emerged to participate in the complex regulatory
networks to shape the evolution of plant phenotype
diversity.
the plant kingdom. The color shades depict the species that were
cate the copy numbers of the corresponding phasiRNA
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Methods
sRNA sequence processing and alignment
sRNA deep sequencing data were downloaded from the
Comparative Sequencing of Plant Small RNAs website
[61] and the GenBank Gene Expression Omnibus [62]
(Additional file 1). All sRNA deep sequencing data were
treated via standard procedures for format conversion,
adaptor trimming, and read collapsing. The treated sRNA
sequences were further cleaned by removing sequences
that matched rRNA sequences using Bowtie [63]. The
cleaned sRNA sequences were mapped to the corre-
sponding reference genome or transcriptome sequences
(Additional file 2) using Bowtie [63], allowing no mis-
matches and no more than six hits to the reference
sequences.
Identification of candidate PHAS loci
We largely followed the methods developed by Xia et al.
[23] for PHAS locus identification. Specifically, the
mapped sRNA reads were denoted according to their
positions in the corresponding reference genome and/or
cDNA sequences. For matching sRNAs to the antisense
strand of the reference sequences, a two-nucleotide
positive offset was included to mimic the 3′ end over-
hang. A search was conducted by scanning transcrip-
tome or genome references using a nine-phase register
(21 bp as a phase register) sliding window (189 bp), each
followed by a break of three-phase register (63 bp). A
positive window was considered to contain no less
than 10 unique reads, with more than half of the
unique reads being 21 nt in length and with no less
than three 21-nt unique reads falling into the phase
registers. Windows were combined if they shared the
same phase registers (i.e., the adjacent windows had a
space of N × 21 bp, where N is an integer) and fell
into the same genes.
Calculation of P-values for positive windows was based

on the formula:
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where n was the number of total unique 21-nt sRNAs
matched within a window, k was the maximum num-
ber of unique 21-nt reads falling into one of the pos-
sible phase registers, and m was the number of 21-nt
phases within a window. The 21-nt PHAS loci with a
P-value of less than 0.001 were identified as the posi-
tive PHAS loci.
Phasing score was calculated following the methods
described in de Paoli et al. [64] and Xia et al. [23] using
the following formula:
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where n was the number of phase registers occupied by
at least one unique 21-nt sRNA within a nine-phase
register window, P was the total number of reads for all
21-nt sRNA reads falling into a given phase in a given
window, and U was the total number of unique reads for
all 21-nt sRNAs falling out of a given phase.
The same formulas were applied to the 24-nt PHAS

windows in all tested libraries, with a change of the
phase register length from 21 nt to 24 nt. We used a
cut-off phasing-score of 15 to identify positive 24-nt
PHAS loci according to Johnson et al. [65].

Prediction of PHAS triggers
PhasiRNAs are mainly triggered by 21-nt and/or 22-nt
miRNA-mediated transcript cleavage in land plants.
Occasionally, siRNAs could also serve as triggers.
sPARTA [55] was used to search for the 21-nt/22-nt
miRNA/siRNA triggers with relatively high abundance
(>10 RPM in a given library) that potentially target 200
bp upstream and 200 bp downstream of a PHAS window
with an alignment score cutoff of 4. The positive candi-
dates were subject to Vienna RNA package [66] analysis
to predict the miRNAs. The predicted miRNAs were
then aligned with miRBase [67] registers (release 19) to
unveil conserved miRNAs. sPARTA [55] was also
employed to validate the miRNA-guided cleavage of
transcripts from the cognate PHAS loci using the avail-
able degradome library data (Additional file 1). We
removed the out-of-phase triggers that were not previ-
ously confirmed or were not supported by our sPARTA
analysis.

Prediction of phasiRNA targets
Target prediction for phasiRNAs was performed with
sPARTA [55]. Twenty-one–nucleotide phasiRNAs with
an abundance of no less than 10 RPM were used to pre-
dict their downstream targets. The alignment score cut-
off was set to 3.

Identification of protein factors responsible for phasiRNA
biogenesis in plants
We followed the methods described in previous studies
[58–60] with minor modifications to mine protein fac-
tors responsible for phasiRNA biogenesis in the genomes
of 41 plant species. Briefly, the published amino acid se-
quences of each gene family from Arabidopsis thaliana
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were used to search against a plant genome database
[41] using BLAST with an E-value cutoff of 1e-10. The
candidates were examined for their functional domains,
with those missing the essential domains removed.
Specifically, for DCL homologs, we searched for candi-
dates having high amino acid sequence homology (>50 %
similarity) to the known DCLs and containing at least four
of the six characteristic domains: DEAD, PAZ, Helicase-C,
Duf283, RNase III, and double-stranded RNA-binding
(DRB). We excluded those that do not have RNase III,
PAZ, or Helicase-C domains. For AGO candidates, we
looked for those having high sequence similarity (>50 %)
to known AGOs and all three functional domains:
DUF1785, PIWI, and PAZ. For RDRs in A. thaliana,
RDR6 or RDR2 share little sequence similarity to RDR1,
RDR3, RDR4, and RDR5, so we used RDR1, RDR2, and
RDR6 individually as baits to search for candidates that
shared high amino acid sequence homology and contained
an RDR functional domain. For SGS3, we searched for
those candidates having high amino acid sequence hom-
ology (>50 % similarity) to A. thaliana SGS3 and contain-
ing only XS zinc finger and XS domains.
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