2,216 research outputs found

    Artmap Networks for Classification of Ultrasonic Weld Inspection Signals

    Get PDF
    Inverse problems in Nondestructive Evaluation (NDE) involve estimating the characteristics of flaws from measurements obtained during an inspection. Several techniques have been developed over the years for solving the inverse problem [1]. These techniques range from calibration approaches to numerical methods based on integral equations. Signal identification and classification is one of the more popular approaches for inverse problems encountered in many practical NDE applications

    Magnetic Resonance Imaging of the Codman Microsensor Transducer Used for Intraspinal Pressure Monitoring: Findings from the Injured Spinal Cord Pressure Evaluation study.

    Get PDF
    STUDY DESIGN: Laboratory and human study. OBJECTIVE: 1) To test the Codman Microsensor Transducer (CMT) in a cervical gel phantom. 2) To test the CMT inserted to monitor intraspinal pressure in a patient with spinal cord injury. SUMMARY OF BACKGROUND DATA: We recently introduced the technique of intraspinal pressure monitoring using the CMT to guide management of traumatic spinal cord injury [Werndle et al. Crit Care Med 2014;42:646]. This is analogous to intracranial pressure monitoring to guide management of patients with traumatic brain injury. It is unclear whether MRI of patients with spinal cord injury is safe with the intraspinal pressure CMT in situ. METHODS: We measured the heating produced by the CMT placed in a gel phantom in various configurations. A 3 T MRI system was used with the body transmit coil and the spine array receive coil. A CMT was then inserted subdurally at the injury site in a patient who had traumatic spinal cord injury and MRI was performed at 1.5 T. RESULTS: In the gel phantom, heating of up to 5 Ā°C occurred with the transducer wire placed straight through the magnet bore. The heating was abolished when the CMT wire was coiled and passed away from the bore. We then tested the CMT in a patient with an American Spinal Injuries Association grade C cervical cord injury. The CMT wire was placed in the configuration that abolished heating in the gel phantom. Good quality T1 and T2 images of the cord were obtained without neurological deterioration. The transducer remained functional after the MRI. CONCLUSION: Our data suggest that the CMT is MR conditional when used in the spinal configuration in humans. Data from a large patient group are required to confirm these findings. LEVEL OF EVIDENCE: N/A

    Di-(2-ethylhexyl) Phthalate Enhances Atopic Dermatitis-Like Skin Lesions in Mice

    Get PDF
    Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in polyvinyl chloride products and has become ubiquitous in the developed countries. DEHP reportedly displays an adjuvant effect on immunoglobulin production. However, it has not been elucidated whether DEHP is associated with the aggravation of atopic dermatitis. We investigated the effects of DEHP on atopic dermatitis-like skin lesions induced by mite allergen in NC/Nga mice. NC/Nga male mice were injected intradermally with mite allergen on their right ears. In the presence of allergen, DEHP (0, 0.8, 4, 20, or 100 Ī¼g) was administered by intraperitoneal injection. We evaluated clinical scores, ear thickening, histologic findings, and the protein expression of chemokines. Exposure to DEHP at a dose of 0.8ā€“20 Ī¼g caused deterioration of atopic dermatitis-like skin lesions related to mite allergen; this was evident from macroscopic and microscopic examinations. Furthermore, these changes were consistent with the protein expression of proinflammatory molecules such as macrophage inflammatory protein-1Ī± (MIP-1Ī±) and eotaxin in the ear tissue in overall trend. In contrast, 100 Ī¼g DEHP did not show the enhancing effects. These results indicate that DEHP enhances atopic dermatitis-like skin lesions at hundred-fold lower levels than the no observed adverse effect level determined on histologic changes in the liver of rodents. DEHP could be at least partly responsible for the recent increase in atopic dermatitis

    Joint modelling rationale for chained equations

    Get PDF
    BACKGROUND: Chained equations imputation is widely used in medical research. It uses a set of conditional models, so is more flexible than joint modelling imputation for the imputation of different types of variables (e.g. binary, ordinal or unordered categorical). However, chained equations imputation does not correspond to drawing from a joint distribution when the conditional models are incompatible. Concurrently with our work, other authors have shown the equivalence of the two imputation methods in finite samples. METHODS: Taking a different approach, we prove, in finite samples, sufficient conditions for chained equations and joint modelling to yield imputations from the same predictive distribution. Further, we apply this proof in four specific cases and conduct a simulation study which explores the consequences when the conditional models are compatible but the conditions otherwise are not satisfied. RESULTS: We provide an additional ā€œnon-informative marginsā€ condition which, together with compatibility, is sufficient. We show that the non-informative margins condition is not satisfied, despite compatible conditional models, in a situation as simple as two continuous variables and one binary variable. Our simulation study demonstrates that as a consequence of this violation order effects can occur; that is, systematic differences depending upon the ordering of the variables in the chained equations algorithm. However, the order effects appear to be small, especially when associations between variables are weak. CONCLUSIONS: Since chained equations is typically used in medical research for datasets with different types of variables, researchers must be aware that order effects are likely to be ubiquitous, but our results suggest they may be small enough to be negligibl

    The politics of regulatory enforcement and compliance: Theorizing and operationalizing political influences

    Get PDF
    There is broad consensus in the literature on regulatory enforcement and compliance that politics matters. However, there is little scholarly convergence on what politics is or rigorous theorization and empirical testing of how politics matters. Many enforcement and compliance studies omit political variables altogether. Among those that address political influences on regulatory outcomes, politics has been defined in myriad ways and, too often, left undefined. Even when political constructs are explicitly operationalized, the mechanisms by which they influence regulatory outcomes are thinly hypothesized or simply ignored. If politics is truly as important to enforcement and compliance outcomes as everyone in the field seems to agree, regulatory scholarship must make a more sustained and systematic effort to understand their relationship, because overlooking this connection risks missing what is actually driving regulatory outcomes. This article examines how the construct of ā€œpoliticsā€ has been conceptualized in regulatory theory and analyzes how it has been operationalized in empirical studies of regulatory enforcement and compliance outcomes. It brings together scholarship across disciplines that rarely speak but have much to say to one another on this subject in order to constitute a field around the politics of regulation. The goal is to sharpen theoretical and empirical understandings of when and how regulation works by better accounting for the role politics plays in its enforcement

    Implications of land use change on the national terrestrial carbon budget of Georgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990.</p> <p>Results</p> <p>The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions.</p> <p>Conclusions</p> <p>We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.</p

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms usersā€™ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants

    Get PDF
    Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the Ī²-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.
    • ā€¦
    corecore