101 research outputs found

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Molecular Evidence of the Toxic Effects of Diatom Diets on Gene Expression Patterns in Copepods

    Get PDF
    Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods.Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi) is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins) compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis) which showed no changes in gene expression profiles.Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450) were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species

    Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites

    Get PDF
    Advanced gastric cancer is often accompanied by metastasis to the peritoneum, resulting in a high mortality rate. Mechanisms involved in gastric cancer metastasis have not been fully clarified because metastasis involves multiple steps and requires a combination of altered expressions of many different genes. Thus, independent analysis of any single gene would be insufficient to understand all of the aspects of gastric cancer peritoneal dissemination. In this study, we performed a global analysis of the differential gene expression of a gastric cancer cell line established from a primary main tumour (SNU-1) and of other cell lines established from the metastasis to the peritoneal cavity (SNU-5, SNU-16, SNU-620, KATO-III and GT3TKB). The application of a high-density cDNA microarray method made it possible to analyse the expression of approximately 21 168 genes. Our examinations of SNU-5, SNU-16, SNU-620, KATO-III and GT3TKB showed that 24 genes were up-regulated and 17 genes down-regulated besides expression sequence tags. The analysis revealed the following altered expression such as: (a) up-regulation of CD44 (cell adhesion), keratins 7, 8, and 14 (epitherial marker), aldehyde dehydrogenase (drug metabolism), CD9 and IP3 receptor type3 (signal transduction); (b) down-regulation of IL2 receptor γ, IL4-Stat (immune response), p27 (cell cycle) and integrin β4 (adhesion) in gastric cancer cells from malignant ascites. We then analysed eight gastric cancer cell lines with Northern blot and observed preferential up-regulation and down-regulation of these selected genes in cells prone to peritoneal dissemination. Reverse transcriptase–polymerase chain reaction confirmed that several genes selected by DNA microarray were also overexpressed in clinical samples of malignant ascites. It is therefore considered that these genes may be related to the peritoneal dissemination of gastric cancers. The results of this global gene expression analysis of gastric cancer cells with peritoneal dissemination, promise to provide a new insight into the study of human gastric cancer peritoneal dissemination
    • …
    corecore