132 research outputs found

    Preliminary evidence that both blue and red light can induce alertness at night

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A variety of studies have demonstrated that retinal light exposure can increase alertness at night. It is now well accepted that the circadian system is maximally sensitive to short-wavelength (blue) light and is quite insensitive to long-wavelength (red) light. Retinal exposures to blue light at night have been recently shown to impact alertness, implicating participation by the circadian system. The present experiment was conducted to look at the impact of both blue and red light at two different levels on nocturnal alertness. Visually effective but moderate levels of red light are ineffective for stimulating the circadian system. If it were shown that a moderate level of red light impacts alertness, it would have had to occur via a pathway other than through the circadian system.</p> <p>Methods</p> <p>Fourteen subjects participated in a within-subject two-night study, where each participant was exposed to four experimental lighting conditions. Each night each subject was presented a high (40 lx at the cornea) and a low (10 lx at the cornea) diffuse light exposure condition of the same spectrum (blue, λ<sub>max </sub>= 470 nm, or red, λ<sub>max </sub>= 630 nm). The presentation order of the light levels was counterbalanced across sessions for a given subject; light spectra were counterbalanced across subjects within sessions. Prior to each lighting condition, subjects remained in the dark (< 1 lx at the cornea) for 60 minutes. Electroencephalogram (EEG) measurements, electrocardiogram (ECG), psychomotor vigilance tests (PVT), self-reports of sleepiness, and saliva samples for melatonin assays were collected at the end of each dark and light periods.</p> <p>Results</p> <p>Exposures to red and to blue light resulted in increased beta and reduced alpha power relative to preceding dark conditions. Exposures to high, but not low, levels of red and of blue light significantly increased heart rate relative to the dark condition. Performance and sleepiness ratings were not strongly affected by the lighting conditions. Only the higher level of blue light resulted in a reduction in melatonin levels relative to the other lighting conditions.</p> <p>Conclusion</p> <p>These results support previous findings that alertness may be mediated by the circadian system, but it does not seem to be the only light-sensitive pathway that can affect alertness at night.</p

    Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest

    Get PDF
    Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew

    BMC Psychol

    Get PDF
    Background Preschoolers regularly display disruptive behaviors in child care settings because they have not yet developed the social skills necessary to interact prosocially with others. Disruptive behaviors interfere with daily routines and can lead to conflict with peers and educators. We investigated the impact of a social skills training program led by childcare educators on children’s social behaviors and tested whether the impact varied according to the child’s sex and family socio-economic status. Methods Nineteen public Child Care Centers (CCC, n = 361 children) located in low socio-economic neighborhoods of Montreal, Canada, were randomized into one of two conditions: 1) intervention (n = 10 CCC; 185 children) or 2) wait list control (n = 9 CCC; 176 children). Educators rated children’s behaviors (i.e., disruptive and prosocial behaviors) before and after the intervention. Hierarchical linear mixed models were used to account for the nested structure of the data. Results At pre-intervention, no differences in disruptive and prosocial behaviors were observed between the experimental conditions. At post-intervention, we found a significant sex by intervention interaction (β intervention by sex = − 1.19, p = 0.04) indicating that girls in the intervention condition exhibited lower levels of disruptive behaviors compared to girls in the control condition (f2 effect size = − 0.15). There was no effect of the intervention for boys. Conclusions Girls may benefit more than boys from social skills training offered in the child care context. Studies with larger sample sizes and greater intervention intensity are needed to confirm the results

    Engagement Across Developmental Periods

    Get PDF
    The goal of this chapter is to provide a cohesive developmental framework and foundation for which to understand student engagement across early childhood, middle childhood, and adolescence. Guided by the bioecological theory of human development and the person-environment fit perspective, this chapter extends Finn\u27s participation-identification model of engagement by mapping student engagement within a larger developmental sequence. This chapter discusses student engagement within specific developmental periods that are tied to the developmental tasks, opportunities, and challenges unique to early childhood, middle childhood, and adolescence. Student engagement is found to be a nuanced developmental outcome, and the differences may be a result of the maturation of biological, cognitive, and socioemotional developmental tasks and the changing contextual landscape for the children and adolescents. Recommendations for future research as well as policy implications are also discussed

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link
    corecore