91 research outputs found

    Epicyclic frequencies derived from the effective potential: simple and practical formulae

    Full text link
    We present and discuss a short and simple derivation of orbital epicyclic frequencies for circular geodesic orbits in stationary and axially symmetric spacetimes. Such spacetimes include as special cases analytically known black hole Kerr and Schwarzschild spacetimes, as well as the analytic Hartle-Thorne spacetime and all numerically constructed spacetimes relevant for rotating neutron stars. Our derivation follows directly from energy and angular momentum conservation and it uses the concept of the effective potential. It has never been published, except for a few special cases, but it has already become a part of the common knowledge in the field.Comment: Invited lecture at the conference "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales", 13-15 July, 2004, Amsterda

    Boundary Effects in Local Inflation and Spectrum of Density Perturbations

    Full text link
    We observe that when a local patch in a radiation filled Robertson-Walker universe inflates by some reason, outside perturbations can enter into the inflating region. Generally, the physical wavelengths of these perturbations become larger than the Hubble radius as they cross into the inflating space and their amplitudes freeze out immediately. It turns out that the corresponding power spectrum is not scale invariant. Although these perturbations cannot reach out to a distance inner observer shielded by a de Sitter horizon, they still indicate a curious boundary effect in local inflationary scenarios.Comment: 11 pages, 8 figures, revtex4, v4: minor typos corrected, twocolumn versio

    Supergeometry in locally covariant quantum field theory

    Get PDF
    In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the enriched framework. As examples we analyze the superparticle in 1|1-dimensions and the free Wess-Zumino model in 3|2-dimensions

    Brane cosmology with an anisotropic bulk

    Full text link
    In the context of brane cosmology, a scenario where our universe is a 3+1-dimensional surface (the ``brane'') embedded in a five-dimensional spacetime (the ``bulk''), we study geometries for which the brane is anisotropic - more specifically Bianchi I - though still homogeneous. We first obtain explicit vacuum bulk solutions with anisotropic three-dimensional spatial slices. The bulk is assumed to be empty but endowed with a negative cosmological constant. We then embed Z_2-symmetric branes in the anisotropic spacetimes and discuss the constraints on the brane energy-momentum tensor due to the five-dimensional anisotropic geometry. We show that if the bulk is static, an anisotropic brane cannot support a perfect fluid. However, we find that for some of our bulk solutions it is possible to embed a brane with a perfect fluid though its energy density and pressure are completely determined by the bulk geometry.Comment: 20 pages, 1 figur

    Introduction to Loop Quantum Gravity

    Full text link
    This article is based on the opening lecture at the third quantum geometry and quantum gravity school sponsored by the European Science Foundation and held at Zakopane, Poland in March 2011. The goal of the lecture was to present a broad perspective on loop quantum gravity for young researchers. The first part is addressed to beginning students and the second to young researchers who are already working in quantum gravity.Comment: 30 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:gr-qc/041005

    TIME-SYMMETRIC INITIAL DATA SETS IN 4--D DILATON GRAVITY

    Get PDF
    I study the time--symmetric initial--data problem in theories with a massless scalar field (dilaton), free or coupled to a Maxwell field in the stringy way, finding different initial--data sets describing an arbitrary number of black holes with arbitrary masses, charges and asymptotic value of the dilaton. The presence of the scalar field gives rise to a number of interesting effects. The mass and charges of a single black hole are different in its two asymptotically flat regions across the Einstein--Rosen bridge. The same happens to the value of the dilaton at infinity. This forbids the identification of these asymptotic regions in order to build (Misner) wormholes in the most naive way. Using different techniques, I find regular initial data for stringy wormholes. The price payed is the existence singularities in the dilaton field. The presence of a single--valued scalar seems to constrain strongly the allowed topologies of the initial space--like surface. Other kinds of scalar fields (taking values on a circle or being defined up to an additive constant) are also briefly considered.Comment: latex file, 38 pages

    The imposition of Cauchy data to the Teukolsky equation I: The nonrotating case

    Full text link
    Gravitational perturbations about a Kerr black hole in the Newman-Penrose formalism are concisely described by the Teukolsky equation. New numerical methods for studying the evolution of such perturbations require not only the construction of appropriate initial data to describe the collision of two orbiting black holes, but also to know how such new data must be imposed into the Teukolsky equation. In this paper we show how Cauchy data can be incorporated explicitly into the Teukolsky equation for non-rotating black holes. The Teukolsky function % \Psi and its first time derivative tΨ\partial_t \Psi can be written in terms of only the 3-geometry and the extrinsic curvature in a gauge invariant way. Taking a Laplace transform of the Teukolsky equation incorporates initial data as a source term. We show that for astrophysical data the straightforward Green function method leads to divergent integrals that can be regularized like for the case of a source generated by a particle coming from infinity.Comment: 9 pages, REVTEX. Misprints corrected in formulas (2.4)-(2.7). Final version to appear in PR

    Interior of a Schwarzschild black hole revisited

    Get PDF
    The Schwarzschild solution has played a fundamental conceptual role in general relativity, and beyond, for instance, regarding event horizons, spacetime singularities and aspects of quantum field theory in curved spacetimes. However, one still encounters the existence of misconceptions and a certain ambiguity inherent in the Schwarzschild solution in the literature. By taking into account the point of view of an observer in the interior of the event horizon, one verifies that new conceptual difficulties arise. In this work, besides providing a very brief pedagogical review, we further analyze the interior Schwarzschild black hole solution. Firstly, by deducing the interior metric by considering time-dependent metric coefficients, the interior region is analyzed without the prejudices inherited from the exterior geometry. We also pay close attention to several respective cosmological interpretations, and briefly address some of the difficulties associated to spacetime singularities. Secondly, we deduce the conserved quantities of null and timelike geodesics, and discuss several particular cases in some detail. Thirdly, we examine the Eddington-Finkelstein and Kruskal coordinates directly from the interior solution. In concluding, it is important to emphasize that the interior structure of realistic black holes has not been satisfactorily determined, and is still open to considerable debate.Comment: 15 pages, 7 figures, Revtex4. V2: Version to appear in Foundations of Physic

    A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation

    Full text link
    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012

    Superselection Sectors and General Covariance.I

    Full text link
    This paper is devoted to the analysis of charged superselection sectors in the framework of the locally covariant quantum field theories. We shall analize sharply localizable charges, and use net-cohomology of J.E. Roberts as a main tool. We show that to any 4-dimensional globally hyperbolic spacetime it is attached a unique, up to equivalence, symmetric tensor \Crm^*-category with conjugates (in case of finite statistics); to any embedding between different spacetimes, the corresponding categories can be embedded, contravariantly, in such a way that all the charged quantum numbers of sectors are preserved. This entails that to any spacetime is associated a unique gauge group, up to isomorphisms, and that to any embedding between two spacetimes there corresponds a group morphism between the related gauge groups. This form of covariance between sectors also brings to light the issue whether local and global sectors are the same. We conjecture this holds that at least on simply connected spacetimes. It is argued that the possible failure might be related to the presence of topological charges. Our analysis seems to describe theories which have a well defined short-distance asymptotic behaviour.Comment: 66 page
    corecore