18 research outputs found

    Data from: Short-term climate change manipulation effects do not scale up to long-term legacies: effects of an absent snow cover on boreal forest plants

    No full text
    1. Despite time lags and non-linearity in ecological processes, the majority of our knowledge about ecosystem responses to long-term changes in climate originates from relatively short-term experiments. 2. We utilized the longest ongoing snow removal experiment in the world and an additional set of new plots at the same location in northern Sweden to simultaneously measure the effects of long-term (11 winters) and short-term (1 winter) absence of snow cover on boreal forest understorey plants, including effects on root growth and phenology. 3. Short-term absence of snow reduced vascular plant cover in the understorey by 42%, reduced fine root biomass by 16%, reduced shoot growth by up to 53%, and induced tissue damage on two common dwarf shrubs. In the long-term manipulation, more substantial effects on understorey plant cover (92% reduced) and standing fine root biomass (39% reduced) were observed, whereas other response parameters, such as tissue damage, were observed less. Fine root growth was generally reduced, and its initiation delayed by c. 3 (short-term) to 6 weeks (long-term manipulation). 4. Synthesis We show that one extreme winter with a reduced snow cover can already induce ecologically significant alterations. We also show that long-term changes were smaller than suggested by an extrapolation of short-term manipulation results (using a constant proportional decline). In addition, some of those negative responses, such as frost damage and shoot growth, were even absolutely stronger in the short-term compared to the long-term manipulation. This suggests adaptation or survival of only those individuals that are able to cope with these extreme winter conditions, and that the short-term manipulation alone would over-predict long-term impacts. These results highlight both the ecological importance of snow cover in this boreal forest, and the value of combining short- and long-term experiments side by side in climate change research

    Substituting root numbers for length: improving the use of minirhizotrons to study fine root dynamics

    No full text
    Minirhizotrons provide a unique way to repeatedly measure the production and fate of individual root segments, while minimizing soil disturbance and the confounding of spatial-temporal variation. However, the time associated with processing videotaped minirhizotron images limits the amount of data that can be extracted in a reasonable amount of time. We found that this limitation can be minimized using a more easily measured variable r (i.e. root numbers) as a substitute of root length. Linear regression models were fitted between root length versus root number for production and mortality of seven sample datasets of varying tree species and treatments. The resulting r2 values ranged from 0.79 to 0.99, suggesting that changes in root numbers can be used to predict root length dynamics reliably. Slope values, representing the mean root segment length (MRSL), ranged from 2.34 to 8.38 mm per root segment for both production and mortality. Most treatments did not alter MRSL substantially, the exceptions being CO2 treatments and a girdling treatment that altered plant community composition and, consequently, root morphology. The high r2 values demonstrated arobust relationship between variables irrespective of species or treatments. Once the quantitative relationship between root lengths and numbers has been established for a particular species-treatment combination, quantifying changes in root number through time should substantially decrease the time required to quantify root dynamics. © 2003 Elsevier Science B.V. All rights reserved

    Carbon balance of the taiga forest within Alaska: present and future

    No full text
    Forest biomass, rates of production, and carbon dynamics are a function of climate, plant species present, and the structure of the soil organic and mineral layers. Inventory data from the U.S. Forest Service (USFS) Inventory Analysis Unit was used to develop estimates of the land area represented by the major overstory species at various age-classes. The CENTURY model was then used to develop an estimate of carbon dynamics throughout the age se- quence of forest development for the major ecosystem types. The estimated boreal forest area in Alaska, based on USFS inventory data is 17 244 098 ha. The total aboveground biomass within the Alaska boreal forest was estimated to be 815 330 000 Mg. The CENTURY model estimated maximum net ecosystem production (NEP) at 137, 88, 152, 99, and 65 g·m–2·year–1 for quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), balsam poplar (Populus balsamifera L.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) BSP) forest stands, respectively. These values were predicted at stand ages of 80, 60, 41, 68, and 100 years, respec- tively. The minimum values of NEP for aspen, paper birch, balsam poplar, white spruce, and black spruce were –171, –166, –240, −300, and –61 g·m–2·year–1 at the ages of 1, 1, 1, 1, and 12, respectively. NEP became positive at the ages of 14, 19, 16, 13, and 34 for aspen, birch, balsam poplar, white spruce, and black spruce ecosystems, respectively. A 5°C increase in mean annual temperature resulted in a higher amount of predicted production and decomposition in all ecosystems, resulting in an increase of NEP. We estimate that the current vegetation absorbs approximately 9.65 Tg of carbon per year within the boreal forest of the state. If there is a 5°C increase in the mean annual temperature with no change in precipitation we estimated that NEP for the boreal forest in Alaska would increase to 16.95 Tg of carbon per year
    corecore