311 research outputs found

    Smooth Inequalities and Equilibrium Inefficiency in Scheduling Games

    Full text link
    We study coordination mechanisms for Scheduling Games (with unrelated machines). In these games, each job represents a player, who needs to choose a machine for its execution, and intends to complete earliest possible. Our goal is to design scheduling policies that always admit a pure Nash equilibrium and guarantee a small price of anarchy for the l_k-norm social cost --- the objective balances overall quality of service and fairness. We consider policies with different amount of knowledge about jobs: non-clairvoyant, strongly-local and local. The analysis relies on the smooth argument together with adequate inequalities, called smooth inequalities. With this unified framework, we are able to prove the following results. First, we study the inefficiency in l_k-norm social costs of a strongly-local policy SPT and a non-clairvoyant policy EQUI. We show that the price of anarchy of policy SPT is O(k). We also prove a lower bound of Omega(k/log k) for all deterministic, non-preemptive, strongly-local and non-waiting policies (non-waiting policies produce schedules without idle times). These results ensure that SPT is close to optimal with respect to the class of l_k-norm social costs. Moreover, we prove that the non-clairvoyant policy EQUI has price of anarchy O(2^k). Second, we consider the makespan (l_infty-norm) social cost by making connection within the l_k-norm functions. We revisit some local policies and provide simpler, unified proofs from the framework's point of view. With the highlight of the approach, we derive a local policy Balance. This policy guarantees a price of anarchy of O(log m), which makes it the currently best known policy among the anonymous local policies that always admit a pure Nash equilibrium.Comment: 25 pages, 1 figur

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most β\beta times any TT best responses, states with approximation ratio O(β)O(\beta) times the price of anarchy are reached after TloglognT \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of β\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant β\beta and very slow convergence for β=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with

    The Price of Anarchy for Selfish Ring Routing is Two

    Full text link
    We analyze the network congestion game with atomic players, asymmetric strategies, and the maximum latency among all players as social cost. This important social cost function is much less understood than the average latency. We show that the price of anarchy is at most two, when the network is a ring and the link latencies are linear. Our bound is tight. This is the first sharp bound for the maximum latency objective.Comment: Full version of WINE 2012 paper, 24 page

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    The sequential price of anarchy for atomic congestion games

    Get PDF
    In situations without central coordination, the price of anarchy relates the quality of any Nash equilibrium to the quality of a global optimum. Instead of assuming that all players choose their actions simultaneously, here we consider games where players choose their actions sequentially. The sequential price of anarchy, recently introduced by Paes Leme, Syrgkanis, and Tardos then relates the quality of any subgame perfect equilibrium to the quality of a global optimum. The effect of sequential decision making on the quality of equilibria, however, depends on the specific game under consideration.\ud Here we analyze the sequential price of anarchy for atomic congestion games with affine cost functions. We derive several lower and upper bounds, showing that sequential decisions mitigate the worst case outcomes known for the classical price of anarchy. Next to tight bounds on the sequential price of anarchy, a methodological contribution of our work is, among other things, a "factor revealing" integer linear programming approach that we use to solve the case of three players

    A polynomial oracle-time algorithm for convex integer minimization

    Full text link
    In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex NN-fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex NN-fold integer minimization problems for which our approach provides polynomial time solution algorithms.Comment: 19 pages, 1 figur

    Malicious Bayesian Congestion Games

    Full text link
    In this paper, we introduce malicious Bayesian congestion games as an extension to congestion games where players might act in a malicious way. In such a game each player has two types. Either the player is a rational player seeking to minimize her own delay, or - with a certain probability - the player is malicious in which case her only goal is to disturb the other players as much as possible. We show that such games do in general not possess a Bayesian Nash equilibrium in pure strategies (i.e. a pure Bayesian Nash equilibrium). Moreover, given a game, we show that it is NP-complete to decide whether it admits a pure Bayesian Nash equilibrium. This result even holds when resource latency functions are linear, each player is malicious with the same probability, and all strategy sets consist of singleton sets. For a slightly more restricted class of malicious Bayesian congestion games, we provide easy checkable properties that are necessary and sufficient for the existence of a pure Bayesian Nash equilibrium. In the second part of the paper we study the impact of the malicious types on the overall performance of the system (i.e. the social cost). To measure this impact, we use the Price of Malice. We provide (tight) bounds on the Price of Malice for an interesting class of malicious Bayesian congestion games. Moreover, we show that for certain congestion games the advent of malicious types can also be beneficial to the system in the sense that the social cost of the worst case equilibrium decreases. We provide a tight bound on the maximum factor by which this happens.Comment: 18 pages, submitted to WAOA'0

    Nash Equilibria in Discrete Routing Games with Convex Latency Functions

    Get PDF
    In a discrete routing game, each of n selfish users employs a mixed strategy to ship her (unsplittable) traffic over m parallel links. The (expected) latency on a link is determined by an arbitrary non-decreasing, non-constant and convex latency function φ. In a Nash equilibrium, each user alone is minimizing her (Expected) Individual Cost, which is the (expected) latency on the link she chooses. To evaluate Nash equilibria, we formulate Social Cost as the sum of the users ’ (Expected) Individual Costs. The Price of Anarchy is the worst-case ratio of Social Cost for a Nash equilibrium over the least possible Social Cost. A Nash equilibrium is pure if each user deterministically chooses a single link; a Nash equilibrium is fully mixed if each user chooses each link with non-zero probability. We obtain: For the case of identical users, the Social Cost of any Nash equilibrium is no more than the Social Cost of the fully mixed Nash equilibrium, which may exist only uniquely. Moreover, instances admitting a fully mixed Nash equilibrium enjoy an efficient characterization. For the case of identical users, we derive two upper bounds on the Price of Anarchy: For the case of identical links with a monomial latency function φ(x) = x d, the Price of Anarchy is the Bell number of order d + 1. For pure Nash equilibria, a generic upper bound from the Wardrop model can be transfered to discrete routing games. For polynomial latency functions with non-negative coefficients and degree d, this yields an upper bound of d + 1. For th
    corecore