33 research outputs found

    Observation of proportionality between friction and contact area at the nanometer scale

    Get PDF
    The nanotribological properties of a hydrogen-terminated diamond(111)/tungsten-carbide interface have been studied using ultra-high vacuum atomic force microscopy. Both friction and local contact conductance were measured as a function of applied load. The contact conductance experiments provide a direct and independent way of determining the contact area between the conductive tungsten-carbide AFM tip and the doped diamond sample. We demonstrate that the friction force is directly proportional to the real area of contact at the nanometer-scale. Furthermore, the relation between the contact area and load for this extremely hard heterocontact is found to be in excellent agreement with the Derjaguin–Müller–Toporov continuum mechanics model

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    The study of contact, adhesion and friction at the atomic scale by atomic force microscopy

    No full text
    Single-family house on Costello Avenue across from public park, December 1988
    corecore