3,066 research outputs found

    Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    Get PDF
    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that WZγWZ\gamma production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.Comment: 27 pages, 12 figures, 2 table

    COTGAME: Cotton Insect Pest Management Simulation Game

    Get PDF
    An interactive version of the Cotton and Insect Management (CIM) model was developed to aid individuals in improving their insect pest management decision making skills. This version, COTGAME, allowed the user to encounter situations and make decisions during the simulated cotton crop growing season. The intermediate results of these decisions were immediately delivered in the form of a report on the current status of the crop and insect populations. Based on the information presented in this status report, the user would make additional management decisions and take tactical actions. Once the harvest date had been reached, the economics of the simulated production season was presented to allow the user to evaluate the decisions. The use of COTGAME has been a way to apply the technology in a detailed crop growth model to improving insect pest management skills

    Zeroing in on more photons and gluons

    Full text link
    We discuss radiation zeros that are found in gauge tree amplitudes for processes involving multi-photon emission. Previous results are clarified by examples and by further elaboration. The conditions under which such amplitude zeros occur are identical in form to those for the single-photon zeros, and all radiated photons must travel parallel to each other. Any other neutral particle likewise must be massless (e.g. gluon) and travel in that common direction. The relevance to questions like gluon jet identification and computational checks is considered. We use examples to show how certain multi-photon amplitudes evade the zeros, and to demonstrate the connection to a more general result, the decoupling of an external electromagnetic plane wave in the ``null zone". Brief comments are made about zeros associated with other gauge-boson emission.Comment: 26 page

    Utilising temporal signal features in adverse noise conditions: Detection, estimation, and the reassigned spectrogram

    Get PDF
    Visual displays in passive sonar based on the Fourier spectrogram are underpinned by detection models that rely on signal and noise power statistics. Time-frequency representations specialised for sparse signals achieve a sharper signal representation, either by reassigning signal energy based on temporal structure or by conveying temporal structure directly. However, temporal representations involve nonlinear transformations that make it difficult to reason about how they respond to additive noise. This article analyses the effect of noise on temporal fine structure measurements such as zero crossings and instantaneous frequency. Detectors that rely on zero crossing intervals, intervals and peak amplitudes, and instantaneous frequency measurements are developed, and evaluated for the detection of a sinusoid in Gaussian noise, using the power detector as a baseline. Detectors that rely on fine structure outperform the power detector under certain circumstances; and detectors that rely on both fine structure and power measurements are superior. Reassigned spectrograms assume that the statistics used to reassign energy are reliable, but the derivation of the fine structure detectors indicates the opposite. The article closes by proposing and demonstrating the concept of a doubly reassigned spectrogram, wherein temporal measurements are reassigned according to a statistical model of the noise background

    Natural age dispersion arising from the analysis of broken crystals, part I. Theoretical basis and implications for the apatite (U-Th)/He thermochronometer

    Get PDF
    Over the last decade major progress has been made in developing both the theoretical and practical aspects of apatite (U-Th)/He thermochronometry and it is now standard practice, and generally seen as best practice, to analyse single grain aliquots. These individual prismatic crystals are often broken and are fragments of larger crystals that have broken during mineral separation along the weak basal cleavage in apatite. This is clearly indicated by the common occurrence of only 1 or no clear crystal terminations present on separated apatite grains, and evidence of freshly broken ends when grains are viewed using a scanning electron microscope. This matters because if the 4He distribution within the whole grain is not homogeneous, because of partial loss due to thermal diffusion for example, then the fragments will all yield ages different from each other and from the whole grain age. Here we use a numerical model with a finite cylinder geometry to approximate 4He ingrowth and thermal diffusion within hexagonal prismatic apatite crystals. This is used to quantify the amount and patterns of inherent, natural age dispersion that arises from analysing broken crystals. A series of systematic numerical experiments were conducted to explore and quantify the pattern and behaviour of this source of dispersion using a set of 5 simple thermal histories that represent a range of plausible geological scenarios. In addition some more complex numerical experiments were run to investigate the pattern and behaviour of grain dispersion seen in several real data sets. The results indicate that natural dispersion of a set of single fragment ages (defined as the range divided by the mean) arising from fragmentation alone varies from c. 7% even for rapid (c. 10 ∘C/Ma), monotonic cooling to over 50% for protracted, complex histories that cause significant diffusional loss of 4He. The magnitude of dispersion arising from fragmentation scales with the grain cylindrical radius, and is of a similar magnitude to dispersion expected from differences in absolute grain size alone (spherical equivalent radii of 40 to 150 μm). This source of dispersion is significant compared with typical analytical uncertainties on individual grain analyses (c. 6%) and standard deviations on multiple grain analyses from a single sample (c. 10-20%). Where there is a significant difference in the U and Th concentration of individual grains (eU), the effect of radiation damage accumulation on 4He diffusivity (assessed using the RDAAM model of Flowers et al. (2009)) is the primary cause of dispersion for samples that have experienced a protracted thermal history, and can cause dispersion in excess of 100% for realistic ranges of eU conentration (i.e. 5-100 ppm). Expected natural dispersion arising from the combined effects of reasonable variations in grain size (radii 40-125 μm), eU concentration (5-150 ppm) and fragmentation would typically exceed 100% for complex thermal histories. In addition to adding a significant component of natural dispersion to analyses, the effect of fragmentation also acts to decouple and corrupt expected correlations between grain ages and absolute grain size and to a lesser extent between grain age and effective uranium concentration (eU). Considering fragmentation explicitly as a source of dispersion and analysing how the different sources of natural dispersion all interact with each other provides a quantitative framework for understanding patterns of dispersion that otherwise appear chaotic. An important outcome of these numerical experiments is that they demonstrate that the pattern of age dispersion arising from fragmentation mimics the pattern of 4He distribution within the whole grains, thus providing an important source of information about the thermal history of the sample. We suggest that if the primary focus of a study is to extract the thermal history information from (U-Th)/He analyses then sampling and analytical strategies should aim to maximise the natural dispersion of grain ages, not minimise it, and should aim to analyse circa 20-30 grains from each sample. The key observations and conclusions drawn here are directly applicable to other thermochronometers, such as the apatite, rutile and titanite U-Pb systems, where the diffusion domain is approximated by the physical grain size

    THE INTERMEDIATE BOSON. I. TOTAL PRODUCTION CROSS SECTIONS IN HIGH ENERGY NEUTRINO AND MUON EXPERIMENTS.

    Full text link

    Quartic Gauge Couplings and the Radiation Zero in pp to l nu gamma gamma events at the LHC

    Get PDF
    We report a study of the process pp to l nu gamma gamma at CERN's Large Hadron Collider, using a leading order partonic-level event generator interfaced to the Pythia program for showering and hadronisation and a with a generic detector simulation. The process is sensitive to possible anomalous quartic gauge boson couplings of the form W W gamma gamma. It is shown how unitarity-safe limits may be placed on these anomalous couplings by applying a binned maximum likelihood fit to the distribution of the two-photon invariant mass, M(gamma gamma), below a cutoff of 1TeV. Assuming 30fb-1 of integrated luminosity, the expected limits are two orders of magnitude tighter than those available from LEP. It is also demonstrated how the Standard Model radiation zero feature of the qq to W gamma gamma process may be observed in the difference between the two-photon and charged lepton pseudo-rapidities.Comment: 9 pages, 7 figure

    Closed Strings with Low Harmonics and Kinks

    Full text link
    Low-harmonic formulas for closed relativistic strings are given. General parametrizations are presented for the addition of second- and third-harmonic waves to the fundamental wave. The method of determination of the parametrizations is based upon a product representation found for the finite Fourier series of string motion in which the constraints are automatically satisfied. The construction of strings with kinks is discussed, including examples. A procedure is laid out for the representation of kinks that arise from self-intersection, and subsequent intercommutation, for harmonically parametrized cosmic strings.Comment: 39, CWRUTH-93-
    corecore