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Abstract

Visual displays in passive sonar based on the Fourier spectrogram are

underpinned by detection models that rely on signal and noise power

statistics. Time-frequency representations specialised for sparse signals

achieve a sharper signal representation, either by reassigning signal en-

ergy based on temporal structure or by conveying temporal structure

directly. However, temporal representations involve nonlinear trans-

formations that make it difficult to reason about how they respond to

additive noise. This article analyses the effect of noise on temporal

fine structure measurements such as zero crossings and instantaneous

frequency. Detectors that rely on zero crossing intervals, intervals and

peak amplitudes, and instantaneous frequency measurements are devel-

oped, and evaluated for the detection of a sinusoid in Gaussian noise,

using the power detector as a baseline. Detectors that rely on fine

structure outperform the power detector under certain circumstances;

and detectors that rely on both fine structure and power measurements

are superior. Reassigned spectrograms assume that the statistics used

to reassign energy are reliable, but the derivation of the fine structure

detectors indicates the opposite. The article closes by proposing and

demonstrating the concept of a doubly-reassigned spectrogram, wherein

temporal measurements are reassigned according to a statistical model

of the noise background.

PACS numbers: 43.60.Hj, 43.60.Bf
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I. INTRODUCTION

A wide variety of acoustic signals consist of spectrotemporally “sparse” modulated nar-

rowband components buried in broadband noise. Familiar examples include speech in traffic

noise, or birdsong in wind blowing through rustling leaves. Many mechanical emissions, such

as those of marine vessels, also belong to this category: periodic sources, such as rotating

machine parts and alternating electrical currents, produce slow-varying sparse components;

at the same time, stochastic sources, such as friction, turbulence and cavitation, produce

broadband noise.

The past thirty years have witnessed the development of powerful new techniques for

analysing sparse speech and music signals. These operate on the fine structure of narrow-

band signals, rather than the distribution of signal power. We shall refer to these methods

generally as temporal representations. Temporal representations include reassigned spectro-

grams (Kodera et al., 1976, 1978; Gardner and Magnasco, 2006; Fulop and Fitz, 2006), the

ensemble interval histogram (EIH Ghitza, 1988; Chandrasekhar and Sreenivas, 2005), zero-

crossings with peak amplitudes (ZCPA; Kim et al., 1999; Haque et al., 2007), in-band syn-

chrony (Cooke, 1991/1993; Seneff, 1988), sinusoidal representations (McAuley and Quatieri,

1986), and fine-structure spectrography (Dajani et al., 2005). The mammalian ear itself also

belongs to this class of system (Pickles, 2012), and it can be modelled as a cochlear filter-

ing stage followed by non-linear transforms on the fine structure in band-pass signals (e.g.,

Sumner et al., 2003). Signal transforms that rely on fine structure in the full band include

the analytical zero crossing-based methods of Kay and Sudhaker (1986) and Kumaresan and

Wang (2001).

Although passive sonar analysis is effectively a machine-listening problem, biologically-

motivated signal transforms based on zero crossings (ZC) and instantaneous frequency (IF)

have failed to make the same impact in sonar as they have in speech and music analysis.

Instead, state-of-the-art processing in sonar continues to rely on linear filtering methods

combined with statistical tests performed on measurements of signal power (Burdic, 2003).
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The reasons for this are not difficult to discern. Reassigned representations of clean, sparse

signals (e.g., a speech utterance recorded in quiet conditions; Gardner and Magnasco, 2006,

Fig. 9) possess a visually-impressive, sharp definition, when contrasted with their Fourier-

based counterparts. Sonar tonal components, though sparse, are recorded at far lower

signal-to-noise ratios (SNRs), and consequently the gains associated with precise compo-

nent resolution are offset by the blurring effects of noise (rather than those of windowing).

More significantly, the mathematical tractability required to quantify the performance of a

sonar statistically (McDonough andWhalen, 1995) is lost whenever temporal representations

introduce nonlinear operations such as the measurement of zero crossings and instantaneous

frequency.

The purpose of this article is to reconcile the benefits of temporal representations on the

one hand, with the stringent requirements of sonar on the other. In so doing, we explore

two core areas in sonar: detection (Section III) and display (Section IV).

A. Optimal Signal Detection using Temporal Features

The classical, power-based approach to sonar signal detection involves a linear filtering

stage that retains signal power and remove noise power, followed by the comparison of a

power measurement (or the average of several measurements) to a threshold to optimally

decide whether a signal is present. The performance of a power detector can be characterised

analytically for familiar classes of stationary signal, such as Gaussian noise and sine waves

(McDonough and Whalen, 1995).

Here, we investigate simple temporal counterparts of the power detector, and attempt

to detect a target using a single measurement of a zero crossing interval or the instantaneous

frequency. A similar project was undertaken fifty years ago by Rainal (1966, 1967), who

devised a detector based on the statistics of a zero crossing counter to detect radar signals

in clutter (see also Bom and Conoly, 1970; Higgins, 1980). Revisiting this line of research,

we find that the performance of a single interval detector compares favourably with a power
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detector in a range of theoretical circumstances, especially those in which the target signal is

displaced from the centre of the analysis filter. We also derive a joint interval-peak detector,

which makes optimal decisions on the basis of a single measurement of a zero crossing

interval and its peak square amplitude, thus combining the benefits of the power detector

and interval detector.

B. Signal Displays based on Temporal Features

Power-based sonar displays consist of a normalised short-time discrete Fourier trans-

form (DFT). The signal power is divided at regular intervals into frequency bins of equal

width and displayed as an image. The resolution of the pixels in this image depend on the

number of samples in the DFT: fewer samples provide better temporal resolution at the

expense of poorer frequency resolution, and vice versa. The linearity of the DFT allows the

means and variances of the DFT magnitudes to be derived analytically for any wide-sense

stationary random process with a known autocovariance function, via the Wiener-Khinchine

theorem. In particular, if the process is described by sinusoids in Gaussian noise, then the

full analytical distribution of the magnitudes is available (Rice, 1944).

Temporal representations reassign the energy in sparse signals according to the fine

structure of its constituent components, and consequently provide a sharper time-frequency

image, especially in regions where the SNR is high. Nevertheless, the theoretical intuition

as to how noisy signals appear in temporal time-frequency representations lags well behind

that for the DFT making it an unattractive candidate for sonar purposes. Our contribution

in this paper closes this gap somewhat by focussing on two issues. The first is to derive

a method for moving from a statistical characterisation of the input random process, e.g.,

its autocorrelation function or power spectral density, to its temporal pseudo-spectrum.

The second is to re-examine the assumptions underlying how fine structure is remapped to

frequency when the SNR is poor. Typically, for instance, temporal representations map an

interval of i seconds between successive crossings in opposite directions (or some equivalent
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measurement) to a frequency estimate f = 1/(2i) Hz, on the assumption that the estimate

is unbiased. This assumption is invalid, however, especially at low SNRs. Consequently,

inferences about sparse signal components based on fine structure measurements must be

made cautiously. This leads to the notion of a double reassignment?of signal energy: firstly

on the basis of a measurement of temporal fine structure, and secondly on the basis of how

noise is likely to have corrupted that measurement.

The sections on detection and display draw on some common statistical results, which

we derive in Section II: namely, the probability density function (p.d.f.) and cumulative

distribution function (c.d.f.) of zero crossing intervals and of the instantaneous frequency.

II. STATISTICAL DISTRIBUTIONS

Detection and estimation procedures decide which of a set of random signals gave rise to

a test statistic on the basis of the conditional distributions of those statistics under various

hypotheses. In this section, we derive the distributions utilised in the applications and

examples that follow in later sections.

We consider the following three test statistics based on temporal features of the signal:

(i) the time interval between two successive zero crossings, (ii) a single sample of the in-

stantaneous phase, and (iii) a bivariate statistics consisting of a zero crossing interval paired

with its peak square amplitude.

We restrict our hypotheses to random processes that consist of a sinusoid with uniformly

random phase added to a zero-mean, wide-sense stationary Gaussian noise process. We

routinely start by deriving a discrete-time process with sample values xn, autocovariances

γk , E{xnxn−k} and autocorrelation coefficients ρk , γk/γ0. The sampling interval (in

seconds) is denoted ∆t. Where possible, we derive continuous-time counterparts, x(t), γ(τ)

and ρ(τ), by taking a limit as the sampling interval approaches zero.

7



A. Zero Crossing Rate

A zero crossing in a random process can be defined as a random event in which there is

a change of sign between two consecutive samples.

The probability that one sample, xn, of a zero mean Gaussian process is positive is 1
2
. If

the process is also wide-sense stationary, the probability that two samples, xn and xn−k, are

both positive is then a function of the autocorrelation coefficient ρk alone (Kedem, 1986):

Φk , Pr(xn ≥ 0, xn−k ≥ 0)

=
1

4
+

1

2π
arcsin ρk. (1)

The probability that three samples, xn, xn−j and xn−k, are all positive is a sum of bivariate

orthant probabilities (David, 1953):

Pr(xn1
≥ 0, xn2

≥ 0, xn3
≥ 0)

=
Φn−j + Φn−k + Φk−j

2
− 1

4
. (2)

In discrete time, a zero crossing occurs at sample n, if the sample at n − 1 has the

opposite sign. For a stationary Gaussian process, a zero crossing is a random event with

time-invariant probability

Pr(xn ≥ 0, xn−k < 0 or xn < 0, xn−k ≥ 0)

= 1− 2Φ1

=
1

2
− 1

π
arcsin ρk. (3)

The expected zero crossing rate for the discrete-time process xn, in crossings per second,

is therefore

λ{xn} ,
π − 2 arcsin ρk

2π△t , (4)

and the expected zero crossing rate for a continous-time process, x(t), is subsequently ob-

tained by taking the limit of this expression as the sampling interval goes to zero:

λ{x(t)} = lim
△t→0

{

π − 2 arcsin ρ(△t)
2π△t

}

=
1

π

√

−ρ′′(0). (5)
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This formula, due to Rice (1944), gives the average zero crossing rate purely as a function

of the second derivative of the autocorrelation function evaluated at τ = 0.

B. Zero Crossing Intervals

Similarly, a zero crossing interval in a random process can be defined as a random event

in which there is a change of sign between two consecutive samples, followed by a reversion

of sign later on.

We now derive an approximation for the probability distribution governing a single zero

crossing interval in either a discrete or a continuous-time process. Consider the probability

that the sample xn−k−1 is negative, given that a zero crossing from positive to negative occurs

at time n. We can rewrite this conditional probability, first in terms of pairwise orthant

probabilities, and then in terms of the arcsine of the autocorrelation coefficient using (1)

and (2), as follows:

Pr(xn−k−1 < 0 | xn−1 ≥ 0, xn < 0)

=
Pr(xn−k−1 < 0, xn−1 ≥ 0, xn < 0)

Pr(xn−1 ≥ 0, xn < 0)

=
1 + 2Φk+1 − 2Φk − 2Φ1

2− 4Φ1

=
1

2
+

arcsin ρk+1 − arcsin ρk
π − 2 arcsin ρ1

. (6)

The observation of a zero crossing at time n coupled with a reversion of sign at time n−k−1

implies that at least one unseen zero crossing falls between times n− k and n. This in turn

implies that the interval preceding the crossing cannot exceed k samples in length. However,

the converse proposition—that an interval shorter than or equal to k implies the pattern of

sign changes in (6) (or its complement)—does not hold, as there remains the possibility of

multiple crossings.

Let us now assume that the ZC intervals in the process are strictly confined to an octave

range, k0 < k < 2k0. For instance, the intervals may be conditioned in this way using a

linear filter. In this case, intervals shorter than or equal to k0 are impossible, and intervals
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shorter than or equal to 2k0 are certain. These restrictions permit one to interpret the

isolated probabilities in (6) collectively as the cumulative distribution function (c.d.f.) of a

random variable, K:

Pr(K ≤ k) =























0 k ≤ k0

1 k ≥ 2k0
1

2
+

arcsin ρk+1 − arcsin ρk
π − 2 arcsin ρ1

otherwise.

This result can be readily extended to continuous-time processes. Let I denote the

random variable governing the zero crossing intervals of x(t). Setting I = K△t and using

a limiting approach similar to that used in (5), the cumulative distribution function (c.d.f.)

for I is

Pr(I ≤ i) =



























0 i ≤ i0

1 i ≥ 2i0
1

2
+

ρ′(i)

2
√

ρ′′(0)[ρ2(i)− 1]
otherwise,

(7)

and the probability density function (p.d.f.) is obtained by differentiation,

pI(i) =











ρ′′(i)[ρ(i)2 − 1]− ρ(i)[ρ′(i)]2
2
√

ρ′′(0)[ρ2(i)− 1]3
0 ≤ i ≤ 2i0

0 otherwise.

(8)

Here ρ′ and ρ′′ denote the first and second derivatives of the autocorrelation coefficient ρ(τ)

with respect to τ .

The analytical expressions for the c.d.f. and p.d.f. of the zero crossing intervals have

been verified numerically for an example random process. The example process is formed by

passing white noise with unit power per 1 Hz band through a filter whose squared magnitude

response is plotted in Figure 1A. The autocorrelation coefficient of the post-filter process

is plotted in Figure 1B. The c.d.f. and p.d.f. of the zero crossing intervals are plotted in

Figures 1C and 1D, respectively. The analytical and empirical distributions agree closely in

this example, as they do for other test processes (results not shown), so we shall proceed

with the analytical result obtained in (8).
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3
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max
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E

FIG. 1. Analytical and empirical distributions for the zero crossing intervals and instan-

taneous frequency samples of a Gaussian random process formed by passing white noise

through a linear filter. A) Squared magnitude response of the filter used to generate the

random process (see text). B) Autocorrelation coefficient of the resultant process. C) Cumu-

lative distribution function of a single zero crossing interval. D) Probability density function

of a single zero crossing interval. E) Probability density function of an instantaneous fre-

quency measurement taken from two samples separated by ∆t = 2−15 s. In panels C–E, the

analytical approximations are shown as black curves; the empirical distributions, sampled

from a 300 s random signal, are shown as a grey areas. The dotted vertical lines indicate

frequencies or intervals ±0.5 octave either side of the centre frequency of the process (1 kHz).

C. Instantaneous Frequency

We now derive a probability distribution to govern the instantaneous frequency for a

discrete-time process (see also Angelsen, 1981, for a distinct derivation.) The IF is measured
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by taking two consecutive samples of the signal phase, Φn−1 and Φn, and calculating the

rate of phase change, i.e.,

F =
Φn − Φn−1

2π△t , Hz.

Consequently, the distribution for F can be obtained by considering the distribution of the

difference between two successive phase samples, φ = Φ2 − Φ1.

The p.d.f. governing two consecutive samples in the circular complex, discrete-time pro-

cess, zn = xn + jx̂n, where x̂ denotes the discrete Hilbert transform of x, is

p(xn−1, x̂n−1, xn, x̂n) =
1

(2π)2|Σ| 12
exp

(

zTΣ−1z

−2

)

,

in which

z ≡
(

xn−1, x̂n−1, xn, x̂n

)T

Σ ≡



















1 0 ρ1 ρ̂1

0 1 −ρ̂1 ρ1

ρ1 −ρ̂1 1 0

ρ̂1 ρ1 0 1



















,

and ρ̂k is the discrete-time Hilbert transform of ρk.

Performing the change of variables,

x1 = r1 cos θ, y1 = r1 sin θ,

x2 = r2 cos(θ + φ), y2 = r2 sin(θ + φ);

and marginalising θ, one arrives at the joint probability density for the linear magnitudes of

the two samples, r1 and r2, and their phase difference φ,

p(r1, r2, φ)

=
r1r2

2π(1− |η1|2)

× exp

[

r21 + r22 − 2r1r2(ρ1 cosφ+ ρ̂1 sinφ)

−2(1− |η1|2)

]

,

where ηk = ρk + jρ̂k.
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Now substitute the two magnitudes for r1 = Γcosψ and r2 = Γ sinψ, to yield

p(Γ, φ) =

∫ π

2

0

Γ3 sin(2ψ)

4π(1− |η1|2)
×

exp

{

Γ2 [1− sin(2ψ)|η1| cos(φ− ∠η1)]

−2(1− |η1|2)

}

dψ

and then integrate to obtain the marginal distribution for φ,

p(φ) =

∫ π

2

0

∫ ∞

0

Γ3 sin(2ψ)

4π(1− |η1|2)
×

exp

{

Γ2 [1− sin(2ψ)|η1| cos(φ− ∠η1)]

−2(1− |η1|2)

}

dΓdψ

=
1− |η1|2

2π

∫ π

2

0

sin(2ψ) dψ

[1− |η1| cos(φ− ∠η1) sin(2ψ)]
2

=
1− |η1|2

2π

[

q2(arctan q2 +
π
2
) + 1

1− q21

]

,

where

q1 ≡ |η1| cos(φ− ∠η1)

q2 ≡
q1

√

1− q21
.

Ultimately then, the distribution for the IF is given by

pF (f) =
p(φ)

2π△t . (9)

Note that this quantity depends on the sampling interval, △t. The IF distribution for

a continuous signal cannot be obtained in the usual way (by allowing △t → 0), because

p(φ)/△t → 0: IF measurements sampled over shorter time periods are noisier, such that

the IF distribution approaches infinite variance as the sampling interval goes to zero. Con-

sequently, the IF measurements reported in this article are always with reference to some

baseline sampling interval.

Figure 1E plots the analytical IF distribution for an example random process, alongside

an empirical version randomly sampled with ∆t = 2−15 s. The derivation for the IF distribu-

tion involves no approximations, and consequently, any discrepancy between the analytical

and empirical results are due only to the finite sample size (300 s).
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D. Zero Crossing Interval and its Peak Square Amplitude

The distributions derived in the preceding paragraphs dealt solely with amplitude scale-

invariant features of the signal, such as zero crossings and IF. In this section, we consider

the joint density of the zero crossing interval and its peak square amplitude. As an approx-

imation of the peak amplitude, we trust that the signal is suitably narrowband, such that

the peaks occur halfway between the crossings, and proceed from there (see Figure 2A).

Assume that a zero crossing interval of duration i has occurred. Let ξ1 and ξ2 denote the

amplitudes near the crossings, and x denote the amplitude at the midpoint (see Figure 2A).

In a stationary Gaussian process, the p.d.f. governing the three amplitudes is

p(ξ1, x, ξ2) =
1

(2π)2|Σ| 12
exp

(

zTΣ−1z

−2

)

, (10)

in which

z ≡
(

ξ1, x, ξ2

)T

Σ ≡













γ(0) γ( i
2
) γ(i)

γ( i
2
) γ(0) γ( i

2
)

γ(i) γ( i
2
) γ(0)













.

Conditioning this p.d.f. upon ξ1 = ξ2 = 0 to mimic the effect of zero crossings is incorrect.

Interpreted explicitly, (10) gives the probability mass residing in the differential element

[ξ1, ξ1 + △ξ1], [ξ2, ξ2 + △ξ2], [x, x + △x], divided by its volume, △ξ1△ξ2△x. In contrast

we aim to find the density in the region [x +△x], [i +△i]. In order to relate the two, we

assume that x(t) is a narrowband process, whose sample functions resemble sinusoids on

short time scales. We can therefore safely substitute the waveform around the peak, x, for

a cosine, and then approximate the differential change △i as arising from the differential

changes △ξ1,△ξ2, as depicted in Figure 2A.
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The change of variables

x =
√
a

△i1 = (+π
√
a/i)△ξ1

△i2 = (−π
√
a/i)△ξ2,

converts the p.d.f. in (10) into one that governs the square of the midpoint (a = x2) and the

temporal displacement of the zeros (△i1, △i2).

Now, having adjusted differential areas, conditioning on △i1 = △i2 = 0 results in the

distribution of the squared midpoint,

pA|I(a | i) =
√

a

2πβ3
exp

(

a

−2β

)

, (11)

where

β ≡ γ(i)− 2γ( i
2
)ρ( i

2
) + γ(0)

1 + ρ(i)
.

The joint distribution for the square peak A and the zero crossing interval I is then

pIA(i, a) ≡ pA|I(a | i)pI(i). (12)

Figure 2B plots a few contours of the joint p.d.f. for the zero crossing intervals and

squared peaks of the process described in Figure 1A. The close agreement between the

empirical (grey) and analytical (black) contours supports the preceding work in this section.

The quality of the contours also resemble those once found by Longuet-Higgins (1983) using

an alternative analytical approach. The marginal density functions, pI(i) and pA(a), found

by integrating the joint p.d.f. (numerically), also closely agree..

E. A Randomly-Phased Sinusoid in Noise

In the preceding sections the statistical distributions of some timing-based features of

Gaussian processes were derived. Another rudimentary class of random process, besides

Gaussian, are sinusoids, or processes consisting of a mixture of a sinusoid and noise. A pure

sinusoid with uniformly random phase, fixed amplitude α, and fixed radial frequency ω, is
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(i, a)
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3
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p
I(i

)
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0

50000

B

FIG. 2. Joint statistics of intervals and peaks. A) Diagram illustrating how small changes

to sample values around zero, ∆ξ1 and ∆ξ2, relate to small changes in crossing interval,

∆i1 and ∆i2, provided that one assumes a functional form for the local waveform. B) Five

contours of the joint interval-peak p.d.f., pIA(i, a), uniformly spaced between zero and its

maximum. The thick grey lines are contours of the empirical distribution; the thinner black

lines are those of the analytical distribution. Marginals for pI(i) and pA(a) are shown to the

bottom and right, respectively. The p.d.f. is that of the example Gaussian process used in

Figure 1.

a non-Gaussian, wide-sense stationary random process with the following autocovariance

function (McDonough and Whalen, 1995):

γs(τ ;A = α) =
α2

2
cosωτ.

Because this process is non-Gaussian, we cannot employ the formulae above (i.e., those for

intervals and IF) using γ(τ), without violating the Gaussian assumptions that were in place
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Interval i × 106 (µ s)
p I(i)

ZC Interval p.d.f.

480 500 520 540 560
0

max

0 1 2
0

4

−5

0

5
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6A B

FIG. 3. A) The distribution of the zero crossing intervals of a sinusoid in noise, based on a

300 s sample (grey area). The sinusoid has frequency 950 Hz and amplitude α ≈ 127, and

the noise is white with unit power per 1 Hz band, giving a narrow-band SNR of ≈ 33 dB.

The ZC intervals were measured after the mixture was passed through a filter with the

magnitude response plotted in Figure 1A (right).

during their derivations. If we proceed with the formula for the zero crossing intervals in (8)

anyway, the result substantially differs from the true distribution (Figure 3A). Any departure

from the true distribution is detrimental to detection and estimation performance. In this

section the solution we have already obtained is adapted so that it works for a sinusoid in

Gaussian noise.

A closely related process, which is Gaussian, yet has sinusoidal sample functions, is

a sinusoid with uniformly random phase and a random (but constant) amplitude, drawn

initially from a Rayleigh distribution with scale parameter σ. Its autocovariance function is

γs(τ ;A ∼ Rayl{σ}) = σ2 cosωτ.

Using a Dirac delta function, a fixed amplitude can be interpreted as a random variable,

whose probability mass is concentrated at a single point. Let us then assume that one

can approximate a Dirac pulse as a superposition of Rayleigh density functions at different
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scales. Combining these two ideas, we can write

pI(i;A = α) =

∫ ∞

0

pI(i;α)δ(α
′ − α)dα′

=

∫ ∞

0

pI(i;α)

[
∫ ∞

0

η(σ)p(α; σ)dσ

]

dα′

=

∫ ∞

0

η(σ)

[
∫ ∞

0

pI(i;α)p(α; σ)dα
′
]

dσ

=

∫ ∞

0

η(σ)pI(i;A ∼ Rayl{σ})dσ, (13)

where p(α; σ) is the p.d.f. of a Rayleigh distribution:

p(α; σ) =
α

σ2
exp

(

− α2

2σ2

)

.

Notice that the densities pI(i;A ∼ Rayl{σ}) are known quantities: namely, densities of

the distributions of ZC intervals of band-limited, stationary Gaussian processes, an analytical

formula for which was provided in (8).

The sole remaining task is to find a function η(σ) that satisfies the inner product equation

∫ ∞

0

η(σ)p(α; σ)dσ =

∫ ∞

0

η(σ)
α′

σ2
exp

(−α′2

2σ2

)

dσ

= δ(α′ − α). (14)

It is unlikely that there exists a function that meets the requirement in (14) analytically.

However, a numerical approximation can be obtained by minimising the total squared error

between a linear combination of a finite number of sampled Rayleigh densities and a (finitely)

narrow pulse. (We describe this procedure in the appendix.)

Figure 3 demonstrates how a sum of 25 appropriately weighted Rayleigh densities (Fig-

ure 3B) can produce a narrow pulse (Figure 3C). Zero crossing interval p.d.f.s for Gaussian

processes are then combined linearly using these weights, and a much better approximation

to the true distribution results (Figure 3A: dotted line). This procedure is quite general,

applying in any situation that demands a result for the sum of a sinusoid and a Gaussian

process, when one possesses only the solution for a purely Gaussian random process. For

instance, it can be used to approximate the distribution of the instantaneous frequency of a

sinusoid in noise, from the noise-only solution. (We do not present an exemplar, but utilise
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the result in Section III.) An alternative approach to generating this density is described in

Cobb (1965).

III. OPTIMAL SIGNAL DETECTION

The statistical distributions derived in the previous section can be incorporated read-

ily into Bayes’ rule to form the core of timing-based detectors. These detectors perform

optimally, in the sense that no other detector which employs the test statistic in question

(e.g., a zero crossing interval) is superior. Formally, such detectors consist of a rule that

compares a likelihood ratio formed from the posterior probabilities of the measurement for

two hypotheses (the signal-and-noise hypothesis, H1, and the noise-only hypothesis, H0) to

a likelihood threshold, λ.

A. Hypothesis Tests

We now compare the performance of four detectors in a sine-in-noise detection task.

The zero crossing interval detector measures a single zero crossing interval, i, and utilitises

the decision rule

Choose H1 if
pI(i | H1)

pI(i | H0)
≥ λ,

and H0 otherwise.

Here, pI(i | H0) is the p.d.f. of the zero crossing intervals of a Gaussian process (8), and

pI(i | H1) is the p.d.f. of the zero crossing intervals of a sine wave added to a Gaussian

process (13).

The instantaneous frequency detector measures a single sample of the instantaneous

frequency, f , and utilitises the decision rule

Choose H1 if
pF (f | H1)

pF (f | H0)
≥ λ,

and H0 otherwise.

Here, pF (f | H0) is the probability density function for the instantaneous frequency of a

Gaussian process (9), and pF (f | H1) is the p.d.f. of the instantaneous frequency for a sine
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wave added to a Gaussian process, which is derived according to the technique set out in

Section II.E.

The joint interval-peak detector measures a single zero crossing interval, i, and its peak

squared amplitude, a, and utilitises the decision rule

Choose H1 if
pIA(i, a | H1)

pIA(i, a | H0)
≥ λ,

and H0 otherwise.

Here, pIA(i, a | H0) is the joint p.d.f. governing the zero crossing interval and its peak squared

amplitude for a Gaussian process (12), and pIA(i, a | H1) is the joint p.d.f. for a sine wave

added to a Gaussian process, also derived using the technique described in Section II.E.

The squared-envelope (quadrature) detector measures a single sample of the signal enve-

lope, |Z|, and utilises the decision rule

Choose H1 if I0

(
√

S
N
|Z|

)

≥ λ,

and H0 otherwise.

where S
N

is the ratio of signal power to noise power at the output of the analysis filter, and

I0 denotes a zeroth-order modified Bessel function of the first kind.

B. Minimum-Error Criterion

We first compare the performance of the four detectors for a minimum error detection

task, where the probability of a signal is 50%. This is achieved by setting λ = 1 (McDonough

and Whalen, 1995). Detection performance is measured as the probability of a correct

decision, and is determined analytically and using simulations.

Sinusoidal signals are presented against a white noise background with various narrow-

band SNRs (NB-SNR). The NB-SNR refers to the ratio of the total signal power to the

noise power in a 1 Hz bandwidth. (Consequently, the NB-SNR excludes the effects of pre-

filtering.) We also define two fixed SNRs: a “low” NB-SNR of 20 dB and a “high” NB-SNR

of 40 dB.
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FIG. 4. Performance of the squared-envelope (thick, grey line), interval (dashed line;

crosses), instantaneous frequency (dotted) and joint interval-peak (solid line; round marker)

detectors, when following a minimum error criterion. The analytical and simulations results

are plotted using lines and markers, respectively. No empirical performance is measured for

the envelope or IF detectors. A) Detection performance as a function of SNR for two signal

frequencies (left: on-centre; right: off-centre). B) Detection performance as a function of

frequency for two SNRs (left: lower SNR; right: higher SNR).

The signal and noise are received through a linear filter whose magnitude response

possesses a Gaussian profile, is centred at 1 kHz, and has a 3 dB bandwidth of 160 Hz. This

magnitude response is somewhat wider than that depicted in Figure 1A. The signal is a pure

sinusoid of known, constant frequency. We also define two fixed frequencies: “on-centre”, at

1 kHz; and “off-centre” at 1.1 Hz.

Figure 4A plots the probability of a correct decision as the SNR is varied when the signal

is on-centre (left panel) and off-centre (right panel). The performance of the four detectors

increases monotonically with NB-SNR, and the analytical results (curves) are supported by

the simulation results (markers).
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In the on-centre case, the detectors that rely on power (the squared-envelope and joint-

interval peak detectors) consistently outperform those that rely exclusively on temporal

statistics (the ZCI and IF detectors). The power detectors perform similarly, suggesting

that the temporal statistics provides no additional information when the signal is centred

on the band. The ZCI and IF detectors also perform similarly, as both measurements convey

local information concerning the rate of change in the signal phase: the former measures the

time between two fixed points in the phase, the latter measures the change in phase between

two fixed points in time.

In the off-centre case (right panel), where the signal is placed at 1.1 kHz, the pattern

changes. At lower SNRs, the temporal detectors commit fewer errors than the squared-

envelope detector; and the joint-interval peak detector outperforms all three. The resolved

signal power is reduced when the signal is displaced from the centre, so that detection

performance worsens overall (the curves shift to the right). However, at low NB-SNRs,

the fine timing structure is more informative than the envelope. The performance of the

joint interval-peak detector is in all cases superior, indicating that the power and timing

information are mutually independent to some degree.

C. Neyman-Pearson Criterion

The Neyman-Pearson criterion relaxes the requirement that errors of both kinds are

minimised, and instead maximises the hit probability, Pr(Hit), subject to a fixed probability

of false alarm, Pr(FA). This involves setting the likelihood threshold λ to satisfy the integral

∫

R1(λ)

pI(xi | H0) dt = Pr(FA), (15)

where R1 is the set of zero crossing intervals that leads to a decision in favour of H1, given

λ.

In practice (15) is difficult to solve for a specific λ. The receiver operating characteristic

(ROC) curve plots a general solution to the Neyman-Pearson criterion by varying λ para-

metrically, and plotting the hit and false alarm probabilities on two-dimensional coordinates.
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FIG. 5. ROC curves for squared-envelope (thick, grey), interval (dashed) and joint interval-

peak (solid) detectors. The analysis band is Gaussian in shape and centred at 1 kHz in all

instances. The family of curves marked ‘A’ show the detection performance for a target

signal of frequency 1050 Hz. The family of curves marked ‘B’ show detection performance

for a target signal of frequency 1100 Hz. In both cases the NB-SNR is 30 dB. Chance

performance is marked with a dotted line.

Figure 5 plots ROC curves for the squared-envelope, zero crossing interval and joint

interval-peak detectors. (We omit the curve for the IF detector, which coincides with that

of the ZCI detector.) We employ the same signal and noise configurations as those described

in the previous section. The NB-SNR is set to 30 dB in all conditions. The signal is placed

either at 1.05 kHz or 1.1 kHz.

When the displacement from the centre is small (0.07 octaves, curve set A), the curves

for the envelope and interval detectors intersect. In a high false alarm regime, the signal is

best detected by its influence on the zero crossings; in a low false alarm regime, a sample of

the envelope is more informative. At Pr(FA) ≈ 0.2, the two statistics are equally useful. The

joint interval-peak detector outperforms the detectors that rely on one type of measurement.
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(The apparent improvement of the ZCI detector over the joint detector at high false alarm

rates is an artefact arising from error in the approximation of the density functions. See

Section II.)

When the displacement from the centre is larger (0.14 octaves, curve set B), all the ROC

curves are nearer to the chance performance line, owing to the overall attenuation of the

signal as it passes into the tail of the filter. Here the ZCI detector outperforms the squared-

envelope detector over the majority of false alarm probabilities shown, with convergence

in the corners. This supports the conclusion of the previous section: that displacing the

frequency from the band centre influences the zero crossings of the mixture in such way as

to render the signal more detectable. Again, a detector that combines information from the

envelope and fine structure results in the best performance.

Thus far we have illustrated the superior performance of the ZCI detector using a fairly

wide analysis band (Q = 6.25). In practice, applications such as narrowband passive sonar

simply utilise a discrete Fourier transform with a small analysis bandwidth to achieve a

suitably high SNR prior to envelope detection. To see whether the interval and joint interval-

peak detectors offer any advantage over the envelope detector at lower analysis bandwidths,

we generated variants of the ROC curves shown in Figure 5 by consistently rescaling all

quantities by a factor of 0.1 in relation to a fixed band centre of 1 kHz. Thus, the bandwidth

was set to 16 Hz, the signal was placed at either 1005 Hz or 1010 Hz (A or B), and the

NB-SNR was decreased by 10 dB. There is no visible change to Figure 5 at print resolution

following these changes, which suggests that it is the displacement of the signal in relation

to the analysis bandwidth which determines detectability. The ROC curves are invariant

with respect to rescaling by factors other than 0.1 (and smaller than 1; results not shown).

IV. DISPLAY

The previous section described how one can optimally decide between Gaussian processes

on the basis of single measurements taken from narrowband signals: envelope samples,
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zero crossing intervals, instantaneous frequency samples, or zero crossing intervals paired

with envelope samples. This section describes how many measurements can be taken and

compiled to form pseudospectral signal representations.

The pseudospectral representations we now review all correspond in some fashion to the

detectors described earlier, as we note in the following section. Because of these common

principles, the derivations of Section II can be re-used to approximate the mean spectral

profiles analytically. We thereby learn that the representation of the signal in these spectra

is biased in the presence of noise. Lastly we demonstrate a proof-of-concept technique that,

given sufficient information about the background noise process, counteracts this bias.

A. Algorithms for the Generation of Pseudospectra

Sampling the squared envelope in many narrowband channels and plotting them pro-

duces a power spectrum (or an energy spectrum, depending on the normalisation scheme

chosen). The discrete Fourier transform falls into this category. These representations relate

most closely to an envelope detector, and applying a threshold to a single DFT bin amounts

to an implementation of the squared envelope detector.

The ensemble interval histogram (EIH) (Ghitza, 1988), working from abstractions of

biological principles found at work in the ear, compiles reciprocal intervals from the output

of multi-level crossing detectors in many channels into a histogram. Temporal information is

conveyed by the crossing times, and a rudimentary form of envelope information is conveyed

by the number of levels crossed. (Energetic signals activate more level crossing detectors.)

The pseudospectrum formed from zero crossing intervals alone, we refer to as the zero

crossing interval histogram (ZCIH) (although, properly speaking, the histogram is formed

from reciprocal intervals). Evidently, the ZCIH is a specialisation of the EIH, in which the

multi-level crossing detector consists solely of the zero level. The ZCIH relies on the same

measurement as the zero crossing interval detector.

Modern variants of the reassigned spectrogram (e.g., Gardner and Magnasco, 2006)
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consist of a histogram of the instantaneous frequency in each channel (and some temporal

adjustments, which we neglect here). These present in a direct fashion the information used

by the instantaneous frequency detector.

Finally, the zero crossings with peak amplitudes (ZCPA) algorithm, due to Kim et al.

(1999), is a weighted histogram of reciprocal zero crossing intervals, in which the individual

intervals are weighted by the narrowband envelope, or some function thereof. In its original,

biologically-motivated formulation, the intervals were weighted by the log peak amplitude.

Adaptations of this algorithm to suit sonar purposes would be likely to use the square of

the envelope. This representation bears the closest resemblance to the joint interval-peak

detector.

B. Mean Pseudospectra for Gaussian Processes

Figure 6A plots the power spectrum of a Gaussian noise process, on a logarithmic scale.

Underneath are plotted the magnitude responses of a bank of filters, on a linear scale.

The filter centres are spaced at intervals of 32 Hz and have a fixed bandwidth of 64 Hz.

The graphs below (panels B–E) correspond to four (pseudo)spectral representations of 100

hundred seconds of noise. In each case, the grey regions are one empirical measurement,

and the black curves (or bars) plot the analytical approximation.

Figure 6B plots the mean squared envelope in each filter channel, both as measured

(grey) and as expected analytically (black). In this case, the analytical solution is exact and

is based on the mean of the exponential distribution. The resolution of the peaks in the

noise profile is limited by the spacing and width of the analysis filters. The sharp resonances

in the noise are somewhat narrower than the analysis filters, and, consequently, the peaks

are smeared out in the energy representation. The second peak (at 1500 Hz) is particularly

obscure.

Figure 6C plots the mean ZCIH. A global histogram is formed from the reciprocal

intervals measured in the output of each filter. To be more exact, when a zero crossing
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FIG. 6. Pseudospectra based on timing measurements for an example realisation of a Gaus-

sian random process. A) Power spectral density of the process (upper) and squared mag-

nitude frequency responses of the analysis filters (lower). B) Squared magnitude of output

samples at each filter. C) Zero crossing interval histogram. D) Instantaneous frequency

histogram. E) Zero crossings with peak amplitudes. In panels B–E, the black curves show

analytical approximations of the expected profile, and the grey regions show a measurement

taken from a random sample of 100 seconds.

interval i is measured in a filter, the histogram bin containing frequency 1
2i
Hz is incremented.

The histogram bins are 4 Hz wide, and the contribution of each interval is weighted by i

to adjust for the fact that shorter intervals (corresponding to higher frequencies) occur

more often per unit time. The analytical mean profile is generated using the cumulative

distribution function of the zero crossing intervals (7). If the lower and upper edges of the

histogram bin are fL and fU , respectively, then the probability that a channel contributes
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to this bin is

Pr (2IfU ≤ 1)− Pr (2IfL < 1) ,

where I is the random variable governing the intervals leaving the channel. The ZCIH is

found by summing these probability mass functions over all channels.

The analytical result closely approximates the random sample. Three features of this

graph are noteworthy. Firstly, the two prominant peaks in the spectral profile are well

represented in the ZCIH. Secondly and relatedly, smooth portions of the spectrum are flat

in the ZCIH, because there is no temporal structure presence except for noise. Thirdly,

there is a ripple artefact in the ZCIH which originates with the analysis filters. The zero

crossing intervals at the output of each narrowband filter are dominated by the periods of

the frequencies around the peak. ZCIH ripple can be reduced by increasing the analysis

filter bandwidth (at the cost of distinct frequency component resolution) or spacing the

filter centres more densely (at the cost of additional computation).

Figure 6D presents the mean instantaneous frequency histogram (IFRH). This represen-

tation is derived in the same way as the ZCIH, except that the histogram is formed from

samples of the instantaneous frequency (measured at a sampling rate of 32384 Hz), rather

than from zero crossing intervals. As we lack an expression for the c.d.f. of the IF distri-

bution, when deriving the analytical result, we use the probability density function at the

centre of the histogram bin. The IFRH closely resembles the ZCIH, just as the results for

the interval detector follow those of the IF detector. Consequently, the comments above in

connection with the ZCIH apply in this case.

Figure 6E displays the mean zero crossings with peak amplitudes (ZCPA). This pseu-

dospectrum is derived in the same manner as the ZCIH, with the exception that the con-

tribution of each zero crossing interval is weighted by the square of its peak amplitude.

Consequently, this representation combines aspects of both the ZCIH and the squared mag-

nitude of the Fourier spectrum. Both narrowband “signals” are clearly visible in the ZCPA,

and the ratio of the peaks to the surrounding noise floor is at its highest in this form of
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spectrum. The analytical result is found by plotting

E{a | i}pI(i) ≡
∫ ∞

0

apIA(i, a) da.

C. Doubly-Reassigned Zero Crossing Interval Histograms

The preceding discussion in relation to detectors and pseudospectra has highlighted that,

in the presence of noise, one cannot reliably “read off” the frequency of a signal component

from the zero crossings in a band-pass signal. An uneven noise background will cause signal

components to gravitate towards energetic regions, and even white noise biases the frequency

towards the filter centre. The reassigned spectrograms proposed to date, including those

mentioned above, do not account for these factors.

The analytical results derived earlier express the probability density of a zero crossing

interval (or IF, peak) in terms of a signal and noise hypothesis: pI(i | H). These densities

can be formed into a likelihood ratio that form the core of an effective detector. Here, we

deploy Bayes’ rule again, to map zero crossing intervals observed from a filter (which are

unreliable) back to true signal frequencies, using a model of the noise floor. In a standard

ZCIH, if the interval i is observed, we increment the histogram bin which captures 1
2i
; that

is, a single point maps to a single point.

We now propose a variant of the ZCIH in which each observation i contributes the full

posterior density to the histogram. Using Bayes’ rule, and keeping the noise background

and filter shape implicit, this density is

pF (f | i;N) =
pI(i | f)pF (f)

pI(i)

=
pI(i | f)pF (f)

∫

pI(i | f ′)pF (f ′) df ′ .

This formulation explicitly accounts for prior expectation of where the signal component is

to be found. In the absence of such knowledge, we can assume a uniform prior frequency in

the range [f1, f2] and write

pF (f | i;N) =
pI(i | f)

∫ f2

f1
pI(i | f ′) df ′

.
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FIG. 7. Example of the doubly-reassigned ZCIH. A) Power spectral density of the noise

process (top) and distribution of the analysis filters (bottom). B) ZCIH (top) and DR-ZCIH

(bottom). The white line shows the frequency track of a component with amplitude 40.

C) Time-averaged ZCIH (grey line) and DR-ZCIH (black line) for the regions 0–3 seconds

(left) and 7–10 seconds (right). The dotted line marks the stationary signal frequency.

We refer to this representation as doubly-reassigned to reflect this second stage of re-

assignment that is made to the timing information to account for the noise. The doubly-

reassigned ZCIH we abbreviate DR-ZCIH.

We provide an example of this procedure in Figure 7. Figure 7A plots the power spectral
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density of a noise background, with a prominent swathe of noise around 1850 Hz. The

analysis filters used by the ZCIH are 64 Hz wide, spaced at intervals of 32 Hz and plotted

beneath.

The signal to be displayed is a tonal of ten seconds duration, which consists of a 3-second

1500 Hz segment and a 3-second 1815 Hz segment, connected by a 6-second sigmoidal sweep,

plotted as a white line on both panels in Figure 7B. The ZCIH (upper panel) represents

the 1500 Hz signal segment with little visible bias. The noise spectrum at this locality is

quite smooth. On the other hand, the 1815 Hz signal segment appears smeared in the ZCIH

towards the prominent spectral peak in the noise background. The intervals captured by

the filters labelled from (ii) to (iii) are influenced by both the signal and the noise.

Prior knowledge of the noise floor permits us to adjust the signal frequency to counteract

its effect, as shown in the lower panel of Figure 7. The signal remains centred on the true

component at all times and the uneven noise background exerts less influence. The mean

ZCIH and DR-ZCIH during the two stationary signal segments are plotted in Figure 7C,

making the bias during the 1815 Hz segment in the ZCIH, and its absence in the DR-ZCIH,

more apparent. In the DR-ZCIH, the contrast of the signal with the noise background

is poorer. This loss of contrast reflects a principled adjustment made for the uncertainty

introduced by the noise. So, whilst bumps in the DR-ZCIH may be shallower, their existence

and the spread of frequencies they convey are more trustworthy. In the limit of SNR→ −∞,

the DR-ZCPA is flat; as there is no principled way for it to reassign intervals, so each interval

contributes a uniform distribution.

Figure 8 shows how the DR-ZCPA reassigns intervals in three selected filters in this

example, marked (i), (ii) and (iii) in Figure 7A. Each vertical column of pixels shows density

that is added to the ZCIH for a measured zero crossing interval (x-axis shows f = 1
2i
). The

white, diagonal line represents the identity reassignment used by the näıve ZCIH. In the limit

of SNR → +∞, the density is concentrated along this line. In the limit of SNR → −∞,

the entire image is grey. (Neither of these conditions is shown.) The white curve plots the

means of the densities in each column. The black/white dotted lines mark the filter centre
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FIG. 8. Frequency reassignment maps used at the three filters marked (i), (ii) and (iii) in

Figure 7A. The abscissa shows the measured frequency ( 1
2i
) and the ordinate shows the ad-

justed frequency. Pixel values show the probability density of a frequency adjustment (higher

values are darker); vertical pixel columns show posterior distributions. Dotted black/white

lines show filter centre frequencies. White diagonal lines plot a näıve (identity) remapping.

The S-shaped white lines plot the distribution mean in each column (for visual purposes

only, this mean is not used in the DR-ZCIH).
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frequency.

Filter (i) is centred on a noise region with a high SNR and a flat spectral profile. Fre-

quencies measurements that coincide with the filter centre are trustworthy, and the four

lines converge at the centre. However, even in flat spectral noise conditions, the dominant

frequency principle causes the frequency of the output component to gravitate towards the

filter centre. The reassignment map therefore mildly extremifies any measurements that fall

either side of the filter centre. Measurements that fall in the tail of the filter are unreliable

and consequently the reassigned frequencies are most spread out here.

Filters (ii) and (iii) are centred either side of a prominent peak in the noise floor around

1850 Hz. The maps for these filters have an S-shaped appearance similar to that for (i).

The noise peak is liable to bias the measurements in filter (ii) upwards; consequently map

(ii) adjusts them downwards. Similarly, the peak is also liable to bias the measurements in

filter (iii) downwards; consequently map (iii) adjusts them upwards.

V. DISCUSSION

The presence of a signal in an acoustic mixture leads to an excess of energy that renders

it detectable. However, it is also possible to detect a signal by its influence on the structure of

the signal. A clean tonal, for instance, will produce zero crossings too regular to be accounted

for by background noise. In this article we have shown that detectors that operate on the

fine structure of a signal exceed the performance of those that operate on a sample of the

squared envelope when the analysis filter is not ideally configured for power detection. The

joint interval-peak detector combines information from the envelope and zero crossings to

achieve the best performance.

Although power is likely to be the statistic used for detection in most circumstances,

there will be occasions in which timing-based detection is preferable. Examples include

situations in which broader analysis bands are used (e.g., to achieve high time resolution

or reduce computations), where the gain of the analysis filter is unreliable or unknown, or
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where the aim is to detect a signal of a particular frequency in a band, as opposed to any

source of energetic noise. The interval detector, being keyed on structure not energy, is able

to distinguish genuinely signal-related contributions to the filter output from other sources,

such as noise bursts and clutter.

Passive sonar displays convey the power levels in DFT bins as the colour or greyscale

of a row of pixels in a waterfall spectrogram. The final detection decision then rests with

the human viewer (Grigorakis, 1997). The information used by timing detectors — zero

crossings or IF — can also be used to produce time-frequency displays that reassign energy,

e.g., ZCPA. The distributions used in the timing detectors can be used to derive the mean

pseudospectra for Gaussian noise and sine-in-Gaussian noise processes. The mean profile for

white noise can be calculated to highlight undesirable ripples due to frequencies gravitating

towards filter centres. The fact that that the ripples resemble tonal components is especially

unfortunate, so the ability to check analytically that the mean profile is suitably flat before

deployment — by choosing the appropriate number of filters, and their spacing and shape

— is valuable.

In addition to the analysis filters spuriously reassigning energy, there is also the prob-

lem of signal structure gravitating towards energetic portions in the noise spectrum. The

distributions relating the zero crossings or instantaneous frequency measurements to signal

frequency can be used again to invert this tendency to some degree, in which case we say the

representation is doubly reassigned: the model is used to reassign measurements to counter-

act the noise background and analysis filters; then the adjusted measurements are in turn

used to reassign the energy (or directly plotted in the case of the DR-ZCIH).

It remains to investigate the possible variations upon double reassignment that exist. An

interval-peak pair recorded at a linear filter can be viewed as a joint statistic that is used to

update a time-frequency display, according to the best hypothesis, or range of hypotheses,

that it indicates according to a noise model. Similarly, the work reported here may be

usefully applied in “machine hearing” systems that detect and classify sounds according to

auditory principles (e.g., Wang and Brown, 2006). Such systems typically include a model
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of cochlear filtering in which both firing rate and temporal fine structure are encoded at the

output: we have described a principled way of combining such information in acoustic signal

detection tasks. Furthermore, double reassignment provides a means by which the source

models available in machine hearing systems can be used to obtain improved representations

of target sounds in noisy acoustic environments.

APPENDIX: PSEUDOCODE

The following functions compute the probability density associated with a zero crossing

interval, i, or a zero crossing interval and the peak-squared amplitude, a, jointly. Auto-

covariance and autocorrelation functions, γ and ρ, are interpreted as functional arguments.

∂(f) returns the functional derivative of f . The notation Λx.[f(x)] constructs a function f

with argument x.

function IntPdf(ρ, i)

ρ′ ← ∂(ρ)

ρ′′ ← ∂(ρ′)

pI ←
ρ′′(i)[ρ(i)2 − 1]− ρ(i)[ρ′(i)]2

2
√

ρ′′(0)[ρ2(i)− 1]3

return pI

end function

function IntPeakPdf(γ, i, a)

ρ← Λx.[γ(x)/γ(0)]

β ← γ(i)− 2γ( i
2
)ρ( i

2
) + γ(0)

1 + ρ(i)

pA|I ←
√

a
2πβ3 exp

(

a
−2β

)

pI ← IntPdf(ρ, i)

return pA|I × pI
end function
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If an interval/squared-peak pair (i, a) is received, the function IntPeakPdf(γ, i, a) will

return the likelihood that it was generated by the Gaussian noise process with autocovariance

function γ. By comparing the likelihoods, a detector can be constructed.

In order to detect sinusoids in noise, additional steps must be taken. The following

function pre-constructs a table of fifty weights that are used in the computation of the

probability of an interval given a sine-in-noise model. Here, Q is a matrix, and z and η are

vectors. The function PseudoInverse(Q, z) computes the pseudoinverse of Q (e.g., using

Matlab’s pinv) and multiplies it by the vector z, i.e., Q+z.

function RayleighWeight(k)

for m = 0 to 10000 do

x← m
1000

zm+1 ← 1√
0.02π

exp
[

− (x−1)2

0.02

]

for n = 0 to 49 do

σ ← 10
23

490
n−2

Qm+1,n+1 ← x
σ2 exp

(

− x2

2σ2

)

end for

end for

η ← PseudoInverse(Q, z)

return ηk

end function

The probability that the interval/squared-peak pair is generated by the Gaussian process

with autocovariance γ plus a sinusoid with amplitude A and radial frequency ω is then

computed as follows.
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function IntPeakSinePdf(γ, A, ω, i, a)

pAI ← 0

for n = 0 to 49 do

σ ← 10
23

490
n−2

η ← RayleighWeight(n+ 1)

γs ← Λτ.[γ(τ) + A2σ2 cos(ωτ)]

pAI ← pAI + η × IntPeakPdf(γs, i, a)

end for

return pAI

end function

Suppose an interval, i, is measured from a Gaussian process with a power spectral density

of Gaussian profile and 10 Hz 3 dB-bandwidth. A discriminator that decides optimally

whether the process was centered at 100 Hz or 110 Hz would be coded as follows:

function TestInterval(i)

b← 10

a← (πb)2

4 ln 2

ρ1 ← Λτ. [exp(−aτ 2) cos(2π · 100τ)]

ρ2 ← Λτ. [exp(−aτ 2) cos(2π · 110τ)]

pH1 = IntPdf(ρ1, i)

pH2 = IntPdf(ρ2, i)

if pH1 ≥ pH2 then

return “100 Hz”

else

return “110 Hz”

end if

end function
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This program outputs the centre frequency of the process most likely to generate the mea-

surement (or 100 Hz in the event of a tie on evidence). A power detector is unable to make

this discrimination without additional filtering. The detectors described in this paper are

variations on this theme, substituting the function IntPdf() for the other functions above.

Matlab code that implements the above functions and reproduces all figures in the paper

can be downloaded from

https://staffwww.dcs.shef.ac.uk/people/G.Brown/interval/
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FIG. 1 Analytical and empirical distributions for the zero crossing intervals and in-
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coefficient of the resultant process. C) Cumulative distribution function of

a single zero crossing interval. D) Probability density function of a single

zero crossing interval. E) Probability density function of an instantaneous

frequency measurement taken from two samples separated by ∆t = 2−15 s. In

panels C–E, the analytical approximations are shown as black curves; the em-

pirical distributions, sampled from a 300 s random signal, are shown as a grey

areas. The dotted vertical lines indicate frequencies or intervals ±0.5 octave

either side of the centre frequency of the process (1 kHz). . . . . . . . . . . 11

FIG. 2 Joint statistics of intervals and peaks. A) Diagram illustrating how small

changes to sample values around zero, ∆ξ1 and ∆ξ2, relate to small changes

in crossing interval, ∆i1 and ∆i2, provided that one assumes a functional

form for the local waveform. B) Five contours of the joint interval-peak

p.d.f., pIA(i, a), uniformly spaced between zero and its maximum. The thick

grey lines are contours of the empirical distribution; the thinner black lines

are those of the analytical distribution. Marginals for pI(i) and pA(a) are

shown to the bottom and right, respectively. The p.d.f. is that of the example

Gaussian process used in Figure 1. . . . . . . . . . . . . . . . . . . . . . . . 16
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FIG. 3 A) The distribution of the zero crossing intervals of a sinusoid in noise, based

on a 300 s sample (grey area). The sinusoid has frequency 950 Hz and

amplitude α ≈ 127, and the noise is white with unit power per 1 Hz band,

giving a narrow-band SNR of ≈ 33 dB. The ZC intervals were measured after

the mixture was passed through a filter with the magnitude response plotted

in Figure 1A (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

FIG. 4 Performance of the squared-envelope (thick, grey line), interval (dashed line;

crosses), instantaneous frequency (dotted) and joint interval-peak (solid line;

round marker) detectors, when following a minimum error criterion. The

analytical and simulations results are plotted using lines and markers, re-

spectively. No empirical performance is measured for the envelope or IF

detectors. A) Detection performance as a function of SNR for two signal

frequencies (left: on-centre; right: off-centre). B) Detection performance as

a function of frequency for two SNRs (left: lower SNR; right: higher SNR). 21

FIG. 5 ROC curves for squared-envelope (thick, grey), interval (dashed) and joint

interval-peak (solid) detectors. The analysis band is Gaussian in shape and

centred at 1 kHz in all instances. The family of curves marked ‘A’ show the

detection performance for a target signal of frequency 1050 Hz. The family of

curves marked ‘B’ show detection performance for a target signal of frequency

1100 Hz. In both cases the NB-SNR is 30 dB. Chance performance is marked

with a dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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FIG. 6 Pseudospectra based on timing measurements for an example realisation of a

Gaussian random process. A) Power spectral density of the process (upper)

and squared magnitude frequency responses of the analysis filters (lower).

B) Squared magnitude of output samples at each filter. C) Zero crossing

interval histogram. D) Instantaneous frequency histogram. E) Zero cross-

ings with peak amplitudes. In panels B–E, the black curves show analytical

approximations of the expected profile, and the grey regions show a measure-

ment taken from a random sample of 100 seconds. . . . . . . . . . . . . . . 27

FIG. 7 Example of the doubly-reassigned ZCIH. A) Power spectral density of the

noise process (top) and distribution of the analysis filters (bottom). B) ZCIH

(top) and DR-ZCIH (bottom). The white line shows the frequency track of

a component with amplitude 40. C) Time-averaged ZCIH (grey line) and

DR-ZCIH (black line) for the regions 0–3 seconds (left) and 7–10 seconds

(right). The dotted line marks the stationary signal frequency. . . . . . . . 30

FIG. 8 Frequency reassignment maps used at the three filters marked (i), (ii) and

(iii) in Figure 7A. The abscissa shows the measured frequency ( 1
2i
) and the

ordinate shows the adjusted frequency. Pixel values show the probability

density of a frequency adjustment (higher values are darker); vertical pixel

columns show posterior distributions. Dotted black/white lines show filter

centre frequencies. White diagonal lines plot a näıve (identity) remapping.

The S-shaped white lines plot the distribution mean in each column (for

visual purposes only, this mean is not used in the DR-ZCIH). . . . . . . . . 32
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