535 research outputs found

    Low Noise and High Photodetection Probability SPAD in 180 nm Standard CMOS Technology

    Get PDF
    A square shaped, low noise and high photo-response single photon avalanche diode suitable for circuit integration, implemented in a standard CMOS 180 nm high voltage technology, is presented. In this work, a p+ to shallow n-well junction was engineered with a very smooth electric field profile guard ring to attain a photo detection probability peak higher than 50% with a median dark count rate lower than 2 Hz/μm2 when operated at an excess bias of 4 V. The reported timing jitter full width at half maximum is below 300 ps for 640 nm laser pulses

    Inhibitory Effect of Gamma Interferon on Cultured Human Keratinocyte Thrombospondin Production, Distribution, and Biologic Activities

    Get PDF
    Rapidly proliferating keratinocytes (KCs) maintained in low calcium, serum-free medium produce and utilize thrombospondin (TSP) as an attachment and spreading factor. To begin to understand the modulation of KC TSP metabolism, gamma interferon (IFN-γ), a product of activated T lymphocytes, was added to KC cultures. IFN-γ; was chosen because activated T cells appear at sites of cutaneous injury. Two additional cytokines including tumor necrosis factor (TNF) and IFN-β were also examined. IFN-γ (600 U/ml), but not TNF (500 U/ml) or IFN-β (103 U/ml), as single agents decreased KC TSP biosynthesis, secretion, and utilization as an attachment factor. IFN-γ alone did not detectably decrease TSP mRNA levels suggesting a post-transcriptional effect in KCs. However, the combination of IFN-γ (600 U/ml) and TNF (500 U/ml) inhibited TSP mRNA production. These results demonstrate the modulation of KC TSP metabolism and biologic activity

    Magnetic ordering of Mn sublattice, dense Kondo lattice behavior of Ce in (RPd3)8Mn (R = La, Ce)

    Full text link
    We have synthesized two new interstitial compounds (RPd3)8Mn (R = La and Ce). The Mn ions present in "dilute" concentration of just 3 molar percent form a sublattice with an unusually large Mn-Mn near neighbor distance of ~ 85 nm. While the existence of (RPd3)8M (where M is a p-block element) is already documented in the literature, the present work reports for the first time the formation of this phase with M being a 3d element. In (LaPd3)8Mn, the Mn sub-lattice orders antiferromagnetically as inferred from the peaks in low-field magnetization at 48 K and 23 K. The latter peak progressively shifts towards lower temperatures in increasing magnetic field and disappears below 1.8 K in a field of ~ 8 kOe. On the other hand in (CePd3)8Mn the Mn sublattice undergoes a ferromagnetic transition around 35 K. The Ce ions form a dense Kondo-lattice and are in a paramagnetic state at least down to 1.5 K. A strongly correlated electronic ground state arising from Kondo effect is inferred from the large extrapolated value of C/T = 275 mJ/Ce-mol K^2 at T = 0 K. In contrast, the interstitial alloys RPd3Mnx (x = 0.03 and 0.06), also synthesized for the first time, have a spin glass ground state due to the random distribution of the Mn ions over the available "1b" sites in the parent RPd3 crystal lattice.Comment: 18 figures and 20 pages of text documen

    Noise characteristics with CMOS sensor array scaling

    Get PDF
    An important consideration when scaling semiconductor sensor devices is the effect it may have on noise performance. Overall signal to noise ratio can be improved both by increasing sensor size, or alternatively by averaging the signal from two or more smaller sensors. In the design of sensor systems it is not immediately clear which is the best strategy to pursue. In this paper, we present a detailed theoretical and experimental study based on three different sensor arrays that show that an array of small independent sensors is always less noisy than a large sensor of the same size

    A 64x64 SPAD array for portable colorimetric sensing, fluorescence and X-ray imaging

    Get PDF
    We present the design and application of a 64x64 pixel SPAD array to portable colorimetric sensing, and fluorescence and x-ray imaging. The device was fabricated on an unmodified 180 nm CMOS process and is based on a square p+/n active junction SPAD geometry suitable for detecting green fluorescence emission. The stand-alone SPAD shows a photodetection probability greater than 60% at 5 V excess bias, with a dark count rate of less than 4 cps/µm2 and sub-ns timing jitter performance. It has a global shutter with an in-pixel 8-bit counter; four 5-bit decoders and two 64-to-1 multiplexer blocks allow the data to be read-out. The array of sensors was able to detect fluorescence from a fluorescein isothiocyanate (FITC) solution down to a concentration of 900 pM with a SNR of 9.8 dB. A colorimetric assay was performed on top of the sensor array with a limit of quantification of 3.1 µM. X-rays images, using energies ranging from 10 kVp to 100 kVp, of a lead grating mask were acquired without using a scintillation crystal

    Multimodal integrated sensor platform for rapid biomarker detection

    Get PDF
    Precision metabolomics and quantification for cost-effective, rapid diagnosis of disease are key goals in personalized medicine and point-of-care testing. Presently, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip. As More than Moore technology increases in importance, integrated circuits for densely patterned sensor chips have grown in significance. Here, we present a versatile single CMOS chip forming a platform to address personalized needs through on-chip multimodal optical and electrochemical detection that will reduce the number of tests that patients must take. The chip integrates interleaved sensing subsystems for quadruple-mode colorimetric, chemiluminescent, surface plasmon resonance and hydrogen ion measurements. These subsystems include a photodiode array and a single photon avalanche diode array, with some elements functionalized to introduce a surface plasmon resonance mode. The chip also includes an array of ion sensitive field effect transistors. The sensor arrays are distributed uniformly over an active area on the chip surface in a scalable and modular design. Bio-functionalization of the physical sensors yields a highly selective simultaneous multiple-assay platform in a disposable format. We demonstrate its versatile capabilities through quantified bioassays performed on-chip for glucose, cholesterol, urea and urate, each within their naturally occurring physiological range

    Have mirror micrometeorites been detected?

    Full text link
    Slow-moving (v15v \sim 15 km/s) 'dark matter particles' have allegedly been discovered in a recent experiment. We explore the possibility that these slow moving dark matter particles are small mirror matter dust particles originating from our solar system. Ways of further testing our hypothesis, including the possibility of observing these dust particles in cryogenic detectors such as NAUTILUS, are also discussed.Comment: Few changes, about 8 pages lon

    Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity

    Get PDF
    Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions, leading to subpopulations (phase I and II cells) that differ in colony morphology and production of exoenzymes/secondary metabolites. The maximal concentration of cadmium allowing both variants growth was 25 μM; however, phase II cells accumulated fivefold higher Cd than phase I cells, even though both variants showed the same growth rate and kinetics, comprising a long stasis period (50 h). The whole transcriptome analysis of both variants in response to Cd was investigated using the home-made DNA microarrays. This analysis revealed completely different adaptation mechanisms developed by each variant to withstand and grow in the presence of the toxic. A re-organization of the cell wall to limit Cd entrance was noticed for phase I cells, as genes encoding levan exopolymers were downregulated at the expense of an upregulation of genes encoding alginate, and an upregulation of transporters such as cadA, and a downregulation of copper transporters. Phase II cells were unable to prevent Cd entrance and recruited genes under the control of oxyR and soxR regulation to face osmotic and oxidant stresses generated by Cd. Putrescine and spermidine metabolism appeared to play a central role in Cd tolerance. Microarray data were validated by biological analyses such as motility, oxidative stress assay, metabolite profiling with ICR-FT/MS and UPLC, capillary electrophoresis analysis of biogenic amines

    Possible implications of the channeling effect in NaI(Tl) crystals

    Get PDF
    The channeling effect of low energy ions along the crystallographic axes and planes of NaI(Tl) crystals is discussed in the framework of corollary investigations on WIMP Dark Matter candidates. In fact, the modeling of this existing effect implies a more complex evaluation of the luminosity yield for low energy recoiling Na and I ions. In the present paper related phenomenological arguments are developed and possible implications are discussed at some extent.Comment: 16 pages, 10 figures, preprint ROM2F/2007/15, submitted for publicatio

    Active region formation through the negative effective magnetic pressure instability

    Full text link
    The negative effective magnetic pressure instability operates on scales encompassing many turbulent eddies and is here discussed in connection with the formation of active regions near the surface layers of the Sun. This instability is related to the negative contribution of turbulence to the mean magnetic pressure that causes the formation of large-scale magnetic structures. For an isothermal layer, direct numerical simulations and mean-field simulations of this phenomenon are shown to agree in many details in that their onset occurs at the same depth. This depth increases with increasing field strength, such that the maximum growth rate of this instability is independent of the field strength, provided the magnetic structures are fully contained within the domain. A linear stability analysis is shown to support this finding. The instability also leads to a redistribution of turbulent intensity and gas pressure that could provide direct observational signatures.Comment: 19 pages, 10 figures, submitted to Solar Physic
    corecore