604 research outputs found

    How to find discrete contact symmetries

    Get PDF
    This paper describes a new algorithm for determining all discrete contact symmetries of any differential equation whose Lie contact symmetries are known. The method is constructive and is easy to use. It is based upon the observation that the adjoint action of any contact symmetry is an automorphism of the Lie algebra of generators of Lie contact symmetries. Consequently, all contact symmetries satisfy various compatibility conditions. These conditions enable the discrete symmetries to be found systematically, with little effort

    Controlling rotary motion of molecular motors based on oxindole

    Get PDF
    Molecular motors are essential components of artificial molecular machines, which can be used to manipulate and amplify mechanical motion at the nanoscale to create machine-like function. Since the discovery of light-driven rotary molecular motors, the field has been widely developed, including the introduction of molecular motors based on oxindole by our group in 2019. The rotational properties of molecular motors, e.g. absorption wavelength, quantum yield and rotation speed, often critically depend on substituent effects. Up to now, the substituent effects of oxindole-based molecular motors have not yet been investigated. Herein, we present a family of oxindole-based molecular motors functionalised at three different positions on the motor core, with either CN or OMe groups. The motors prepared in this work retain the favourable features of oxindole-based motors, i.e. simple synthesis and visible light addressability. We find that functionalisation has substantial effects on the absorption wavelength of the motors, meanwhile the rotation speed is unaffected. Furthermore, we found that functionalisation of the oxindole molecular motors increases their quantum efficiency considerably in comparison to previous motors of their class

    Saxion Emission from SN1987A

    Get PDF
    We study the possibility of emission of the saxion, a superpartner of the axion, from SN1987A. The fact that the observed neutrino pulse from SN1987A is in excellent agreement with the current theory of supernovae places a strong bound on the energy loss into any non-standard model channel, therefore enabling bounds to be placed on the decay constant, f_a, of a light saxion. The low-energy coupling of the saxion, which couples at high energies to the QCD gauge field strength, is expected to be enhanced from QCD scaling, making it interesting to investigate if the saxion could place stronger bounds on f_a than the axion itself. Moreover, since the properties of the saxion are determined by f_a, a constraint on this parameter can be translated into a constraint on the supersymmetry breaking scale. We find that the bound on f_a from saxion emission is comparable with the one derived from axion emission due to a cancellation of leading-order terms in the soft-radiation expansion.Comment: 18 pages, 2 figures; minor changes, typos corrected, version to appear in JHE

    Electron-Phonon Dynamics in an Ensemble of Nearly Isolated Nanoparticles

    Full text link
    We investigate the electron population dynamics in an ensemble of nearly isolated insulating nanoparticles, each nanoparticle modeled as an electronic two-level system coupled to a single vibrational mode. We find that at short times the ensemble-averaged excited-state population oscillates but has a decaying envelope. At long times, the oscillations become purely sinusoidal about a ``plateau'' population, with a frequency determined by the electron-phonon interaction strength, and with an envelope that decays algebraically as t^-{1/2} We use this theory to predict electron-phonon dynamics in an ensemble of Y_2 O_3 nanoparticles.Comment: 11 pages, 3 figure

    Surface Instability in Windblown Sand

    Full text link
    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure

    The Strange Parton Distribution of the Nucleon: Global Analysis and Applications

    Get PDF
    The strangeness degrees of freedom in the parton structure of the nucleon are explored in the global analysis framework, using the new CTEQ6.5 implementation of the general mass perturbative QCD formalism of Collins. We systematically determine the constraining power of available hard scattering experimental data on the magnitude and shape of the strange quark and anti-quark parton distributions. We find that current data favor a distinct shape of the strange sea compared to the isoscalar non-strange sea. A new reference parton distribution set, CTEQ6.5S0, and representative sets spanning the allowed ranges of magnitude and shape of the strange distributions, are presented. Some applications to physical processes of current interest in hadron collider phenomenology are discussed.Comment: 19 pages; revised version submitted to JHE

    Specific Heat of the 2D Hubbard Model

    Full text link
    Quantum Monte Carlo results for the specific heat c of the two dimensional Hubbard model are presented. At half-filling it was observed that cT2c \sim T^2 at very low temperatures. Two distinct features were also identified: a low temperature peak related to the spin degrees of freedom and a higher temperature broad peak related to the charge degrees of freedom. Away from half-filling the spin induced feature slowly disappears as a function of hole doping while the charge feature moves to lower temperature. A comparison with experimental results for the high temperature cuprates is discussed.Comment: 6 pages, RevTex, 11 figures embedded in the text, Submitted to Phys. Rev.

    A comparative assessment of dilution correction methods for spot urinary analyte concentrations in a UK population exposed to arsenic in drinking water

    Get PDF
    Spot urinary concentrations of environmental exposure biomarkers require correction for dilution. There is no consensus on the most appropriate method, with creatinine used by default despite lacking theoretical robustness. We comparatively assessed the efficacy of creatinine; specific gravity (SG); osmolality and modifications of all three for dilution correcting urinary arsenic. For 202 participants with urinary arsenic, creatinine, osmolality and SG measurements paired to drinking water As, we compared the performance corrections against two independent criteria: primarily, (A) correlations of corrected urinary As and the dilution measurements used to correct them - weak correlations indicating good performance and (B) correlations of corrected urinary As and drinking water As - strong correlations indicating good performance. More than a third of variation in spot urinary As concentrations was attributable to dilution. Conventional SG and osmolality correction removed significant dilution variation from As concentrations, whereas conventional creatinine over-corrected, and modifications of all three removed measurable dilution variation. Modified creatinine and both methods of SG and osmolality generated stronger correlations of urinary and drinking water As concentrations than conventional creatinine, which gave weaker correlations than uncorrected values. A disparity in optima between performance criteria was observed, with much smaller improvements possible for Criterion B relative to A. Conventional corrections – particularly creatinine - limit the utility spot urine samples, whereas a modified technique outlined here may allow substantial improvement and can be readily retrospectively applied to existing datasets. More studies are needed to optimize urinary dilution correction methods. Covariates of urinary dilution measurements still warrant consideration

    Исторический роман о Максиме Греке и его место в творчестве Мицоса Александропулоса

    Get PDF
    Целью статьи является анализ творчества Мицоса Александропулоса (Αλεξανδρόπουλος Μήτσος, 1924- 2008) в контексте развития современного греческого исторического романа (на примере романа «Сцены из жизни Максима Грека» («Σκηνές από το βίο του Μάξιμου του Γραικού», 1967-1969))

    Iodine status in western Kenya: a community-based cross-sectional survey of urinary and drinking water iodine concentrations

    Get PDF
    Spot urinary iodine concentrations (UIC) are presented for 248 individuals from western Kenya with paired drinking water collected between 2016 and 2018. The median UIC was 271 µg L−1, ranging from 9 to 3146 µg L−1, unadjusted for hydration status/dilution. From these data, 12% were potentially iodine deficient ( 300 µg L−1). The application of hydration status/urinary dilution correction methods was evaluated for UICs, using creatinine, osmolality and specific gravity. The use of specific gravity correction for spot urine samples to account for hydration status/urinary dilution presents a practical approach for studies with limited budgets, rather than relying on unadjusted UICs, 24 h sampling, use of significantly large sample size in a cross-sectional study and other reported measures to smooth out the urinary dilution effect. Urinary corrections did influence boundary assessment for deficiency–sufficiency–excess for this group of participants, ranging from 31 to 44% having excess iodine intake, albeit for a study of this size. However, comparison of the correction methods did highlight that 22% of the variation in UICs was due to urinary dilution, highlighting the need for such correction, although creatinine performed poorly, yet specific gravity as a low-cost method was comparable to osmolality corrections as the often stated ‘gold standard’ metric for urinary concentration. Paired drinking water samples contained a median iodine concentration of 3.2 µg L−1 (0.2–304.1 µg L−1). A weak correlation was observed between UIC and water-I concentrations (R = 0.11)
    corecore