126 research outputs found

    New Strong Interactons at the Tevatron ?

    Get PDF
    Recent results from CDF indicate that the inclusive cross section for jets with ET>200E_T > 200 GeV is significantly higher than that predicted by QCD. We describe here a simple flavor-universal variant of the ``coloron" model of Hill and Parke that can accommodate such a jet excess, and which is not in contradiction with other experimental data. As such, the model serves as a useful baseline with which to compare both the data and other models proposed to describe the jet excess. An interesting theoretical feature of the model is that if the global chiral symmetries of the quarks remain unbroken in the confining phase of the coloron interaction, it realizes the possibility that the ordinary quarks are composite particles.Comment: added 1/Lambda41/Lambda^4 contributions to scattering cross-sections; 10 pages, LaTeX, includes 1 figure. Full postscript version at http://smyrd.bu.edu/htfigs/htfigs.htm

    Constraining Spin-One Color-Octet Resonances Using CDF and ATLAS Data

    Full text link
    In this paper, we study the production of spin-one color-octet resonances (colorons) at hadron colliders in a model independent way. We use dijets data measured by CDF (at \sqrt{s}=1.96 TeV and L=1.131/pb)andATLAS(ats=7 1/pb) and ATLAS (at \sqrt{s}=7 TeV and L=315 1/nb) collaborations at the Tevatron and the LHC respetively to impose limits on the coupling of colorons to fermions. We show that CDF data still produce the more stringent limits on the coloron coupling constant.Comment: Version accepted for publication in EPJC. Two paragraphs expanded and new references adde

    Experimental Constraints on Heavy Fermions in Higgsless Models

    Full text link
    Using an effective Lagrangian approach we analyze a generic Higgsless model with composite heavy fermions, transforming as SU(2)_{L+R} Doublets. Assuming that the Standard Model fermions acquire mass through mixing with the new heavy fermions, we constrain the free parameters of the effective Lagrangian studying Flavour Changing Neutral Current processes. In so doing we obtain bounds that can be applied to a wide range of models characterized by the same fermion mixing hypothesis.Comment: 23 pages, 10 figure

    Discovery limits for Techni-Omega production in eγe\gamma Collisions

    Full text link
    In a strongly-interacting electroweak sector with an isosinglet vector state, such as the techni-omega, ωT\omega_T, the direct ωTZγ \omega_T Z \gamma coupling implies that an ωT\omega_T can be produced by ZγZ \gamma fusion in eγe \gamma collisions. This is a unique feature for high energy e+ee^+e^- or eee^-e^- colliders operating in an eγe\gamma mode. We consider the processes eγeZγe^- \gamma \to e^- Z\gamma and eγeW+WZe^- \gamma \to e^- W^+ W^- Z, both of which proceed via an intermediate ωT\omega_T. We find that at a 1.5 TeV e+ee^+e^- linear collider operating in an eγe\gamma mode with an integrated luminosity of 200 fb1^{-1}, we can discover an ωT\omega_T for a broad range of masses and widths.Comment: To appear in the Proceedings of the 29th International Conference on High Energy Physics, Vancouver, July 1998, 5 pages, Latex, 7 postscript figure

    Flavour Universal Dynamical Electroweak Symmetry Breaking

    Get PDF
    The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavour to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400-700)~GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavour symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolour model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolour model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig

    Flavor Physics and the Triviality Bound on the Higgs Mass

    Get PDF
    The triviality of the scalar sector of the standard one-doublet Higgs model implies that this model is only an effective low-energy theory valid below some cut-off scale Λ\Lambda. The underlying high-energy theory must include flavor dynamics at a scale of order Λ\Lambda or greater in order to give rise to the different Yukawa couplings of the Higgs to ordinary fermions. This flavor dynamics will generically produce flavor-changing neutral currents and non-universal corrections to Z -> b b-bar. We show that the experimental constraints on the neutral D-meson mass difference imply that Λ\Lambda must be greater than of order 21 TeV. We also discuss bounds on Λ\Lambda from the constraints on extra contributions to the K_L - K_S mass difference and to the coupling of the Z boson to b-quarks. For theories defined about the infrared-stable Gaussian fixed-point, we estimate that this lower bound on Λ\Lambda yields an upper bound of approximately 460 GeV on the Higgs boson's mass, independent of the regulator chosen to define the theory.Comment: 11 pages, 2 embedded figures, LaTeX; references and discussion of CP violation adde

    Constructing Gravitational Dimensions

    Full text link
    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg which does not break down until the scale Lambda_2=(mg Mpl)^(1/2), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Lambda_3 = (mg^2 Mpl)^(1/3). Next, we look at how the discretization prescribed by the truncation of the KK tower of an honest extra diemsinon rasies the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit. A number of canditate symmetries associated with locality in the discretized dimension are also discussed.Comment: 21 pages, 6 diagrams, 1 figur

    New Topflavor Models with Seesaw Mechanism

    Get PDF
    New class of models are constructed in which the third family quarks, but not leptons, experience a new SU(2) or U(1) gauge force. Anomaly cancellation enforces the introduction of spectator quarks so that the top and bottom masses are naturally generated via a seesaw mechanism. We find the new contributions to the (S,T,U) parameters and Zbb vertex to be generically small. We further analyze how the reasonable flavor mixing pattern can be generated to ensure the top-seesaw mechanism and sufficiently suppress the flavor-changing effects for light quarks. Collider signatures for the light Higgs boson and top quark are also discussed.Comment: To match the version in Rapid Communication of PRD, RevTex 5p

    Isospin Breaking and Fine Tuning in Top-Color Assisted Technicolor

    Full text link
    Recently, Hill has proposed a model in which new, potentially low-energy, top-color interactions produce a top-condensate ({\em a la} Nambu---Jona-Lasinio) and accommodate a heavy top quark, while technicolor is responsible for producing the WW and ZZ masses. Here we argue that isospin breaking gauge interactions, which are necessary in order to split the top and bottom quark masses, are likely to couple to technifermions. In this case they produce a significant shift in the WW and ZZ masses (i.e.~contribute to Δρ=αT\Delta \rho_* = \alpha T) if the scale of the new interactions is near 1 TeV. In order to satisfy experimental constraints on Δρ\Delta \rho_*, we find that either the effective top quark coupling or the top-color coupling must be adjusted to 1\%. Independent of the couplings of the technifermions, we show that the isospin-splitting of the top and bottom quarks implies that the top-color gauge bosons must have masses larger than about 1.4 TeV. Our analysis can also be applied to strong extended technicolor (ETC) models that produce the top-bottom splitting via isospin breaking ETC interactions.Comment: 9 pages, LaTeX, 4 figures uuencoded also available at http://smyrd.bu.edu/htfigs/htfigs.htm

    Top quark effects in composite vector pair production at the LHC

    Full text link
    In the context of a strongly coupled Electroweak Symmetry Breaking, composite light scalar singlet and composite triplet of heavy vectors may arise from an unspecified strong dynamics and the interactions among themselves and with the Standard Model gauge bosons and fermions can be described by a SU(2)L×SU(2)R/SU(2)L+RSU(2)_L\times SU(2)_R/SU(2)_{L+R} Effective Chiral Lagrangian. In this framework, the production of the V+VV^{+}V^{-} and V0V0V^{0}V^{0} final states at the LHC by gluon fusion mechanism is studied in the region of parameter space consistent with the unitarity constraints in the elastic channel of longitudinal gauge boson scattering and in the inelastic scattering of two longitudinal Standard Model gauge bosons into Standard Model fermions pairs. The expected rates of same-sign di-lepton and tri-lepton events from the decay of the V0V0V^{0}V^{0} final state are computed and their corresponding backgrounds are estimated. It is of remarkable relevance that the V0V0V^{0}V^{0} final state can only be produced at the LHC via gluon fusion mechanism since this state is absent in the Drell-Yan process. It is also found that the V+VV^{+}V^{-} final state production cross section via gluon fusion mechanism is comparable with the V+VV^{+}V^{-} Drell-Yan production cross section. The comparison of the V0V0V^{0}V^{0} and V+VV^{+}V^{-} total cross sections will be crucial for distinguishing the different models since the vector pair production is sensitive to many couplings. This will also be useful to determine if the heavy vectors are only composite vectors or are gauge vectors of a spontaneously broken gauge symmetry.Comment: 18 pages, 5 tables, 6 figures. Missing figures added. Matches published versio
    corecore