62 research outputs found

    Sintering characteristics of nanocrystalline TiO2—A study combining small angle neutron scattering and nitrogen absorption-BET

    Get PDF
    Small angle neutron scattering (SANS) was employed to characterize the pore structure of nanophase TiO2 ceramic materials compacted at different temperatures. Nanophase samples, produced by inert gas condensation, were compacted at 25, 290, 413, and 550 °C using a pressure of 1 GPa. The pore size distribution of the sample compacted at room temperature was very broad, with sizes ranging from 3-30 nm and pores comprising 38% of the sample volume. Compaction at 290 and 413 °C reduced the pore volume to 25% and 20%, respectively, by eliminating pores at both the small and large ends of the distribution. Compaction at 550 °C resulted in a pore volume that was less than 8%. Complications in the SANS analysis arising from the scattering from grain boundaries are discussed. The results from SANS are compared with those derived from nitrogen absorption, BET, measurement

    Ion-irradiation-assisted tuning of phase transformations and physical properties in single crystalline Fe₇Pd₃ ferromagnetic shape memory alloy thin films

    Get PDF
    Control of multi-martensite phase transformations and physical properties constitute greatly unresolved challenges in Fe7Pd3-based ferromagnetic shape memory alloys. Single crystalline Fe7Pd3 thin films reveal an austenite to martensite phase transformation, continuously ranging from the facecentered cubic (fcc) to the face-centered tetragonal (fct) and body-centered cubic (bcc) phases upon irradiation with 1.8 MeV Kr+ ions. Within the present contribution, we explore this scenario within a comprehensive experimental study: employing atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM), we first clarify the crystallography of the ionirradiation-induced austenite⇒martensite and inter-martensite transitions, explore the multivariant martensite structures with c-a twinning and unravel a very gradual transition between variants at twin boundaries. Accompanying magnetic properties, addressed locally and globally, are characterized by an increasing saturation magnetization from fcc to bcc, while coercivity and remanence are demonstrated to be governed by magnetocrystalline anisotropy and ion-irradiationinduced defect density, respectively. Based on reversibility of ion-irradiation-induced materials changes due to annealing treatment and a conversion electron Mößbauer spectroscopy (CEMS) study to address changes in order, a quantitative defect-based physical picture of ion-irradiation-induced austenite⇔martensite transformation in Fe7Pd3 is developed. The presented concepts thus pave the way for ion-irradiation-assisted optimization strategies for tailored functional alloys

    Modeling Microstructure and Irradiation Effects

    Full text link

    Neon gas imaging of gold in the field ion microscope. Report No. 1973

    No full text

    Reactive epitaxy of Co nanoparticles on (111)Si

    No full text
    10.1093/jmicro/50.6.545Journal of Electron Microscopy506545-548JELJ

    Ball milling of systems with positive heat of mixing

    No full text
    Ball milling of systems with positive heat of mixing : effect of temperature in Ag-Cu / T. Klassen ; U. Herr ; R. S. Averback. - In: Acta materialia. 45. 1997. S. 2921-293
    corecore