1,642 research outputs found

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields

    Full text link
    We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections 5, 7.1, 7.2 with examples, conclusion with all basic results unchanged, corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164), added Refs. 52, 53, 54, examples for massive fields developed by 2 way

    Quantum magneto-oscillations in a two-dimensional Fermi liquid

    Full text link
    Quantum magneto-oscillations provide a powerfull tool for quantifying Fermi-liquid parameters of metals. In particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a non-zero magnetic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in 3D but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.Comment: 4 pages, 1 figur

    Elliptic operators on manifolds with singularities and K-homology

    Full text link
    It is well known that elliptic operators on a smooth compact manifold are classified by K-homology. We prove that a similar classification is also valid for manifolds with simplest singularities: isolated conical points and fibered boundary. The main ingredients of the proof of these results are: an analog of the Atiyah-Singer difference construction in the noncommutative case and an analog of Poincare isomorphism in K-theory for our singular manifolds. As applications we give a formula in topological terms for the obstruction to Fredholm problems on manifolds with singularities and a formula for K-groups of algebras of pseudodifferential operators.Comment: revised version; 25 pages; section with applications expande

    Study of the process e+eπ+ππ0e^+e^- \to \pi^+\pi^-\pi^0 in the energy region s\sqrt[]{s} below 0.98 GeV

    Full text link
    The cross section of the process e+eπ+ππ0e^+e^-\to \pi^+\pi^-\pi^0 was measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2M collider in the energy region s\sqrt[]{s} below 980 MeV. This measurement was based on about 1.2×1061.2 \times 10^6 selected events. The obtained cross section was analyzed together with the SND and DM2 data in the energy region s\sqrt[]{s} up to 2 GeV. The ω\omega-meson parameters: mω=782.79±0.08±0.09m_\omega=782.79\pm 0.08\pm 0.09 MeV, Γω=8.68±0.04±0.15\Gamma_\omega=8.68\pm 0.04\pm 0.15 MeV and σ(ω3π)=1615±9±57\sigma(\omega\to 3\pi)=1615\pm 9\pm 57 nb were obtained. It was found that the experimental data cannot be described by a sum of only ω\omega, ϕ\phi, ω\omega^\prime and ω\omega^{\prime\prime} resonances contributions. This can be interpreted as a manifestation of ρ3π\rho\to 3\pi decay, suppressed by GG-parity, with relative probability B(ρ3π)=(1.01±0.360.54±0.034)×104B(\rho\to 3\pi) = (1.01\pm^{0.54}_{0.36}\pm 0.034) \times 10^{-4}.Comment: 41 pages REVTEX and 34 figure

    Conformal Affine Toda Soliton and Moduli of IIB Superstring on AdS5×S5AdS_5\times S^5

    Full text link
    In this paper we interpret the hidden symmetry of the moduli space of IIB superstring on AdS5×S5AdS_{5}\times S^{5} in terms of the chiral embedding in AdS5AdS_{5}, which turns to be the CP3\mathbb{CP}^{3} conformal affine Toda model. We review how the position μ\mu of poles in the Riemann-Hilbert formulation of dressing transformation and how the value of loop parameters μ\mu in the vertex operator of affine algebra determines the moduli space of the soliton solutions, which describes the moduli space of the Green-Schwarz superstring. We show also how this affine SU(4) symmetry affinize the conformal symmetry in the twistor space, and how a soliton string corresponds to a Robinson congruence with twist and dilation spin coefficients μ\mu of twistor.Comment: Final version, Misprints corrected, Note adde

    Evolution of supermassive black holes

    Full text link
    Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked for in the early Universe, as very luminous quasars are detected up to redshift higher than z=6. These black holes evolve then in a hierarchical fashion, following the merger hierarchy of their host halos. Accretion of gas, traced by quasar activity, plays a fundamental role in determining the two parameters defining a black hole: mass and spin. A particularly intriguing epoch is the initial phase of SMBH growth. It is very challenging to meet the observational constraints at z=6 if BHs are not fed at very high rates in their infancy.Comment: Extended version of the invited paper to appear in the Proceedings of the Conference "Relativistic Astrophysics and Cosmology - Einstein's Legacy

    Improved Measurement of the Positive Muon Anomalous Magnetic Moment

    Get PDF
    A new measurement of the positive muon's anomalous magnetic moment has been made at the Brookhaven Alternating Gradient Synchrotron using the direct injection of polarized muons into the superferric storage ring. The angular frequency difference omega_{a} between the angular spin precession frequency omega_{s} and the angular orbital frequency omega_{c} is measured as well as the free proton NMR frequency omega_{p}. These determine R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} / mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10} (pm 5 ppm), in good agreement with the previous CERN and BNL measurements for mu^+ and mu^-, and with the standard model prediction.Comment: 4 pages, 4 figures. accepted for publication in Phys. Rev. D62 Rapid Communication

    Chirality effects in carbon nanotubes

    Full text link
    We consider chirality related effects in optical, photogalvanic and electron-transport properties of carbon nanotubes. We show that these properties of chiral nanotubes are determined by terms in the electron effective Hamiltonian describing the coupling between the electron wavevector along the tube principal axis and the orbital momentum around the tube circumference. We develop a theory of photogalvanic effects and a theory of d.c. electric current, which is linear in the magnetic field and quadratic in the bias voltage. Moreover, we present analytic estimations for the natural circular dichroism and magneto-spatial effect in the light absorption.Comment: 23 pages, 3 figure

    Search for Heavy Neutral and Charged Leptons in e+ e- Annihilation at LEP

    Get PDF
    A search for exotic unstable neutral and charged heavy leptons as well as for stable charged heavy leptons is performed with the L3 detector at LEP. Sequential, vector and mirror natures of heavy leptons are considered. No evidence for their existence is found and lower limits on their masses are set
    corecore