609 research outputs found
Effects for atmospheric neutrino experiments from electron neutrino oscillations
The minimal interpretation of the atmospheric neutrino data suggests that the
muon neutrino oscillates into another species with a mixing angle close to the
maximal . In the Exact Parity Symmetric Model, both the muon and
electron neutrinos are expected to be maximally mixed with essentially sterile
partners ( and respectively). We examine the impact of
maximal oscillations on the atmospheric neutrino experiments.
We estimate that maximal oscillations will have effects on
atmospheric neutrino data for . For in this range, a slight but distinctive rise in the
ratio of muon-like to electron-like events is predicted for the low-energy
sample. Furthermore, the ratio of low-energy electron-like events with zenith
angles less than to those with zenith angles greater than
should be greater than 1.Comment: 11 pages, LaTeX, no figure
The Long-Term Future of Extragalactic Astronomy
If the current energy density of the universe is indeed dominated by a
cosmological constant, then high-redshift sources will remain visible to us
only until they reach some finite age in their rest-frame. The radiation
emitted beyond that age will never reach us due to the acceleration of the
cosmic expansion rate, and so we will never know what these sources look like
as they become older. As a source image freezes on a particular time frame
along its evolution, its luminosity distance and redshift continue to increase
exponentially with observation time. The higher the current redshift of a
source is, the younger it will appear as it fades out of sight. For the popular
set of cosmological parameters, I show that a source at a redshift z=5-10 will
only be visible up to an age of 4-6 billion years. Arguments relating the
properties of high-redshift sources to present-day counterparts will remain
indirect even if we continue to monitor these sources for an infinite amount of
time. These sources will not be visible to us when they reach the current age
of the universe.Comment: Phys. Rev. D, in press (2001
Particle-Like Description in Quintessential Cosmology
Assuming equation of state for quintessential matter: , we
analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown
that its dynamics is formally equivalent to that of a classical particle under
the action of 1D potential . It is shown that Hamiltonian method can be
easily implemented to obtain a classification of all cosmological solutions in
the phase space as well as in the configurational space. Examples taken from
modern cosmology illustrate the effectiveness of the presented approach.
Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis
of acceleration and horizon problems, are presented. The inverse problem of
reconstructing the Hamiltonian dynamics (i.e. potential function) from the
luminosity distance function for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to
investigation of quintessence models were adde
Could thermal fluctuations seed cosmic structure?
We examine the possibility that thermal, rather than quantum, fluctuations
are responsible for seeding the structure of our universe. We find that while
the thermalization condition leads to nearly Gaussian statistics, a
Harrisson-Zeldovich spectrum for the primordial fluctuations can only be
achieved in very special circumstances. These depend on whether the universe
gets hotter or colder in time, while the modes are leaving the horizon. In the
latter case we find a no-go theorem which can only be avoided if the
fundamental degrees of freedom are not particle-like, such as in string gases
near the Hagedorn phase transition. The former case is less forbidding, and we
suggest two potentially successful ``warming universe'' scenarios. One makes
use of the Phoenix universe, the other of ``phantom'' matter.Comment: minor corrections made, references added, matches the version
accepted to PR
Coronal Diagnostics from Narrowband Images around 30.4 nm
Images taken in the band centered at 30.4 nm are routinely used to map the
radiance of the He II Ly alpha line on the solar disk. That line is one of the
strongest, if not the strongest, line in the EUV observed in the solar
spectrum, and one of the few lines in that wavelength range providing
information on the upper chromosphere or lower transition region. However, when
observing the off-limb corona the contribution from the nearby Si XI 30.3 nm
line can become significant. In this work we aim at estimating the relative
contribution of those two lines in the solar corona around the minimum of solar
activity. We combine measurements from CDS taken in August 2008 with
temperature and density profiles from semiempirical models of the corona to
compute the radiances of the two lines, and of other representative coronal
lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed
quantities from line ratios (temperatures and densities) and line radiances in
absolute units, we obtain a good overall match between observations and models.
We find that the Si XI line dominates the He II line from just above the limb
up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in
the 30.4 nm band is expected to become smaller, even negligible in the corona
beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal
temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
Entropy and universality of Cardy-Verlinde formula in dark energy universe
We study the entropy of a FRW universe filled with dark energy (cosmological
constant, quintessence or phantom). For general or time-dependent equation of
state the entropy is expressed in terms of energy, Casimir energy,
and . The correspondent expression reminds one about 2d CFT entropy only for
conformal matter. At the same time, the cosmological Cardy-Verlinde formula
relating three typical FRW universe entropies remains to be universal for any
type of matter. The same conclusions hold in modified gravity which represents
gravitational alternative for dark energy and which contains terms growing at
low curvature. It is interesting that BHs in modified gravity are more entropic
than in Einstein gravity. Finally, some hydrodynamical examples testing new
shear viscosity bound, which is expected to be the consequence of the
holographic entropy bound, are presented for the early universe in the plasma
era and for the Kasner metric. It seems that the Kasner metric provides a
counterexample to the new shear viscosity bound.Comment: LaTeX file, 39 pages, references are adde
Large-scale production of cellulose-binding domains : adsorption studies using CBD-FITC conjugates
A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial nzymatic preparation (Celluclast) was developed. The CBD obtained, isolated
from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30%
glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBDfluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of
fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very
slow process.Fundação para a Ciência e a Tecnologia (FCT
First steps towards deriving rock magnetic and paleomagnetic data from subsets of magnetic grains in lavas using Micromagnetic Tomography
Our understanding of the behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g. lavas. Almost all experiments to determine the past state of the Earth's magnetic field use bulk samples (typically 1 - 10 cc) and measure their magnetic moment after series of laboratory treatments. Lavas, however, consist of mixtures of different iron-oxide grains that vary in size, shape, and chemistry. Some of these grains are good recorders of the Earth's magnetic field; others are not. Only a small amount of adverse behaved magnetic grains in a sample already hampers all classical experiments to obtain paleointensities; success rates as low as 10-20% are common, i.e. for 80-90% of all lavas vital information on paleointensities is lost before it can be uncovered.Recently, we showed that it is possible to determine the magnetization of individual grains inside a synthetic sample using a new technique: Micromagnetic Tomography. The individual magnetizations of grains are determined by inverting scanning magnetometry data from the surface on the sample onto the known locations, sizes and shapes of the magnetic grains that are obtained from a microCT scan of the sample. The synthetic sample used for our proof-of-concept, however, was optimized for success: the dispersion of magnetic markers was low, and the magnetite grains had a well-defined grain size range. Furthermore, the scanning SQUID microscope used requires the sample to be at 4 K, below the Verweij transition of the magnetite grains.Here we present the first Micromagnetic Tomography results from natural samples. We used two magnetic scanning techniques that operate at room temperature, a Magnetic Tunneling Junction set-up and a Quantum Diamond Magnetometer, to acquire the magnetic surface scans from a Hawaiian lava and calculated magnetic moments of individual grains present. We show that it is possible to acquire rock magnetic information as function of grain size from these natural samples and reveal the first results of interpreting a paleomagnetic direction from selected subsets of grains in our samples. These are the first steps towards deriving rock magnetic and paleomagnetic information from subsets of known good recorders inside lava samples, a technique that will re
Micromagnetic Tomography for paleomagnetism and rock-magnetism
Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g. (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size and shape; some of them record the Earth’s magnetic field well, others are unreliable. The presence of a small amount of adverse behaved magnetic grains in a sample may already obscure important information on the past state of the geomagnetic field. Recently it was shown that it is possible to determine magnetizations of individual grains in a sample by combining X-ray computed tomography and magnetic surface scanning measurements. Here we establish this new Micromagnetic Tomography (MMT) technique and make it suitable for use with different magnetic scanning techniques, and for both synthetic and natural samples. We acquired reliable magnetic directions by selecting subsets of grains in a synthetic sample, and we obtained rock-magnetic information of individual grains in a volcanic sample. This illustrates that MMT opens up entirely new venues of paleomagnetic and rock-magnetic research. MMT’s unique ability to determine the magnetization of individual grains in a nondestructive way allows for a systematic analysis of how geological materials record and retain information on the past state of the Earth’s magnetic field. Moreover, by interpreting only the contributions of known magnetically well-behaved grains in a sample MMT has the potential to unlock paleomagnetic i
- …