11 research outputs found
Chronic myelomonocytic leukemia in younger patients : molecular and cytogenetic predictors of survival and treatment outcome
In patients with chronic myelomonocytic leukemia (CMML), age>65 years is an adverse prognostic factor. Our objective in the current study was to examine risk factors for survival and treatment outcome in 261 'young' adults with CMML, as defined by age \u2a7d65 years. In multivariable analysis, lower HB (P=0.01), higher circulating blast % (P=0.002), ASXL1 (P=0.0007) and SRSF2 mutations (P=0.008) and Mayo-French cytogenetic stratification (P=0.04) negatively impacted survival. Similarly, leukemia-free survival was independently affected by higher circulating blast % (P<0.0001), higher bone marrow blast % (P=0.0007) and the presence of circulating immature myeloid cells (P=0.0002). Seventy-five (29%) patients received hypomethylating agents (HMA), with the median number of cycles being 5, and the median duration of therapy being 5 months. The over-all response rate was 40% for azacitidine and 30% for decitabine. Fifty-three (24%) patients underwent an allogeneic hematopoietic stem cell transplant (AHSCT), with a response rate of 56% and a non-relapse mortality of 19%. Survival in young adults with CMML, although higher than in older patients, is poor and even worse in the presence of ASXL1 and SRSF2 mutations. Treatment outcome was more impressive with AHSCT than with HMA and neither was influenced by ASXL1/SRSF2 mutations or karyotype
Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: A collaborative study of 1027 patients
CALR (calreticulin) trails JAK2 as the second most mutated gene in essential thrombocythemia (ET). Mutant CALR in ET is a result of frameshift mutations, caused by exon 9 deletions or insertions; type-1, 52-bp deletion (p.L367fs*46), and type-2, 5-bp TTGTC insertion (p.K385fs*47) variants constitute more than 80% of these mutations. The current study includes a total of 1027 patients divided into test (n\u2009=\u2009402) and validation (n\u2009=\u2009625) cohorts. Among the 402 ET patients in the test cohort, 227 (57%) harbored JAK2, 11 (3%) Myeloproliferative leukemia virus oncogene (MPL), and 114 (28%) CALR mutations; 12% were wild-type for all three mutations (i.e., triple-negative). Among the 114 patients with CALR mutations, 51 (45%) displayed type-1 and 44 (39%) type-2 variants; compared to mutant JAK2, both variants were associated with higher platelet and lower hemoglobin and leukocyte counts. However, male sex was associated with only type-1 (P\u2009=\u20090.005) and younger age with type-2 (P\u2009=\u20090.001) variants. Notably, platelet count was significantly higher in type-2 vs. type-1 CALR-mutated patients (P\u2009=\u20090.03) and the particular observation was validated in the validation cohort that included 111 CALR-mutated ET patients (P\u2009=\u20090.002). These findings, coupled with the recent demonstration of preferential expression of mutant and wild-type CALR in megakaryocytes, suggest differential effects of CALR variants on thrombopoiesis
MIPSS70 : Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis
Purpose To develop a prognostic system for transplantation-age patients with primary myelofibrosis (PMF) that integrates clinical, cytogenetic, and mutation data. Patients and Methods The study included 805 patients with PMF age 64 70 years recruited from multiple Italian centers and the Mayo Clinic (Rochester, MN), forming two independent learning and validation cohorts. A Cox multivariable model was used to select from among a list of 22 variables those that were predictive of overall survival (OS). Integrated clinical and genetic prognostic models with (MIPSS70-plus) or without (MIPSS70) cytogenetic information were developed. Results Multivariable analysis identified the following as significant risk factors for OS: hemoglobin 25
7 109/L, platelets < 100
7 109/L, circulating blasts 65 2%, bone marrow fibrosis grade 65 2, constitutional symptoms, absence of CALR type-1 mutation, presence of high-molecular risk mutation (ie, ASXL1, EZH2, SRSF2, IDH1/ 2), and presence of two or more high-molecular risk mutations. By assigning hazard ratio (HR)-weighted points to these variables, three risk categories were delineated for the MIPSS70 model; 5-year OS was 95% in low-risk, 70% in intermediate-risk, and 29% in high-risk categories, corresponding to median OS of 27.7 years (95% CI, 22 to 34 years), 7.1 years (95% CI, 6.2 to 8.1 years), and 2.3 years (95% CI, 1.9 to 2.7 years), respectively. In the MIPSS70-plus model, which included cytogenetic information, four risk categories were delineated, with 5-year OS of 91% in low-risk, 66% in intermediate-risk (HR, 3.2; 95% CI, 1.9 to 5.2), 42% in high-risk (HR, 6.4; 95% CI, 4.1 to 10.0), and 7% very high-risk categories (HR, 17.0; 95% CI, 9.8 to 29.2). Both models remained effective after inclusion of older patients in the analysis. Conclusion MIPSS70 and MIPSS70-plus provide complementary systems of risk stratification for transplantation-age patients with PMF and integrate prognostically relevant clinical, cytogenetic, and mutation data
Mutations and prognosis in primary myelofibrosis
Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; P<0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P=0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations. Mutational profiling for ASXL1, EZH2, SRSF2 and IDH identifies PMF patients who are at risk for premature death or leukemic transformatio