1,216 research outputs found
Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307
Context. The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The system lacks massive planets and is therefore a potential candidate for having additional low-mass planetary companions. Aims. We re-derive Doppler measurements from public HARPS spectra of HD 40307 to confirm the significance of the reported signals using independent data analysis methods. We also investigate these measurements for additional low-amplitude signals. Methods. We used Bayesian analysis of our radial velocities to estimate the probability densities of different model parameters. We also estimated the relative probabilities of models with differing numbers of Keplerian signals and verified their significance using periodogram analyses. We investigated the relation of the detected signals with the chromospheric emission of the star. As previously reported for other objects, we found that radial velocity signals correlated with the S-index are strongly wavelength dependent. Results. We identify two additional clear signals with periods of 34 and 51 days, both corresponding to planet candidates with minimum masses a few times that of the Earth. An additional sixth candidate is initially found at a period of 320 days. However, this signal correlates strongly with the chromospheric emission from the star and is also strongly wavelength dependent. When analysing the red half of the spectra only, the five putative planetary signals are recovered together with a very significant periodicity at about 200 days. This signal has a similar amplitude as the other new signals reported in the current work and corresponds to a planet candidate with Msini ~ 7 M⊕ (HD 40307 g).Peer reviewe
Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters
Quantitative helio- and asteroseismology require very precise measurements of
the frequencies, amplitudes, and lifetimes of the global modes of stellar
oscillation. It is common knowledge that the precision of these measurements
depends on the total length (T), quality, and completeness of the observations.
Except in a few simple cases, the effect of gaps in the data on measurement
precision is poorly understood, in particular in Fourier space where the
convolution of the observable with the observation window introduces
correlations between different frequencies. Here we describe and implement a
rather general method to retrieve maximum likelihood estimates of the
oscillation parameters, taking into account the proper statistics of the
observations. Our fitting method applies in complex Fourier space and exploits
the phase information. We consider both solar-like stochastic oscillations and
long-lived harmonic oscillations, plus random noise. Using numerical
simulations, we demonstrate the existence of cases for which our improved
fitting method is less biased and has a greater precision than when the
frequency correlations are ignored. This is especially true of low
signal-to-noise solar-like oscillations. For example, we discuss a case where
the precision on the mode frequency estimate is increased by a factor of five,
for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a
proper treatment of the frequency correlations does not provide any significant
improvement; nevertheless we confirm that the mode frequency can be measured
from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue
"Helioseismology, Asteroseismology, and MHD Connections
Transiting Exoplanets with JWST
The era of exoplanet characterization is upon us. For a subset of exoplanets
-- the transiting planets -- physical properties can be measured, including
mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres
of a further subset of transiting planets, the hot Jupiters, is now routine
with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will
continue Spitzer's legacy with its large mirror size and precise thermal
stability. JWST is poised for the significant achievement of identifying
habitable planets around bright M through G stars--rocky planets lacking
extensive gas envelopes, with water vapor and signs of chemical disequilibrium
in their atmospheres. Favorable transiting planet systems, are, however,
anticipated to be rare and their atmosphere observations will require tens to
hundreds of hours of JWST time per planet. We review what is known about the
physical characteristics of transiting planets, summarize lessons learned from
Spitzer high-contrast exoplanet measurements, and give several examples of
potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade:
JWST and Concurrent Facilities, Astrophysics & Space Science Library,
Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht
(2008)." The original publication will be available at
http://www.springerlink.co
Ab-initio calculation of Kerr spectra for semi-infinite systems including multiple reflections and optical interferences
Based on Luttinger's formulation the complex optical conductivity tensor is
calculated within the framework of the spin-polarized relativistic screened
Korringa-Kohn-Rostoker method for layered systems by means of a contour
integration technique. For polar geometry and normal incidence ab-initio Kerr
spectra of multilayer systems are then obtained by including via a 2x2 matrix
technique all multiple reflections between layers and optical interferences in
the layers. Applications to Co|Pt5 and Pt3|Co|Pt5 on the top of a semi-infinite
fcc-Pt(111) bulk substrate show good qualitative agreement with the
experimental spectra, but differ from those obtained by applying the commonly
used two-media approach.Comment: 32 pages (LaTeX), 5 figures (Encapsulated PostScript), submitted to
Phys. Rev.
Note on Tests of the Factorization Hypothesis and the Determination of Meson Decay Constants
We discuss various tests of the factorization hypothesis making use of the
close relationship between semi-leptonic and factorized nonleptonic decay
amplitudes. It is pointed out that factorization leads to truely
model-independent predictions for the ratio of nonleptonic to semi-leptonic
decay rates, if in the nonleptonic decay a spin one meson of arbitrary mass or
a pion take the place of the lepton pair. Where the decay constants of those
mesons are known, these predictions represent ideal tests of the factorization
hypothesis. In other cases they may be used to extract the decay constants.
Currently available data on the decays are shown to be in excellent agreement with
the factorization results. A weighted average of the four independent values
for the QCD coefficient extracted from the data gives
suggesting that it may be equal to the Wilson coefficient evaluated
at the scale .Comment: (9 pages, ReVTeX, no figures), HD-THEP-92-3
Deriving High-Precision Radial Velocities
This chapter describes briefly the key aspects behind the derivation of
precise radial velocities. I start by defining radial velocity precision in the
context of astrophysics in general and exoplanet searches in particular. Next I
discuss the different basic elements that constitute a spectrograph, and how
these elements and overall technical choices impact on the derived radial
velocity precision. Then I go on to discuss the different wavelength
calibration and radial velocity calculation techniques, and how these are
intimately related to the spectrograph's properties. I conclude by presenting
some interesting examples of planets detected through radial velocity, and some
of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation
We examine the time-reversal-violating nuclear ``Schiff moment'' that induces
electric dipole moments in atoms. After presenting a self-contained derivation
of the form of the Schiff operator, we show that the distribution of Schiff
strength, an important ingredient in the ground-state Schiff moment, is very
different from the electric-dipole-strength distribution, with the Schiff
moment receiving no strength from the giant dipole resonance in the
Goldhaber-Teller model. We then present shell-model calculations in light
nuclei that confirm the negligible role of the dipole resonance and show the
Schiff strength to be strongly correlated with low-lying octupole strength.
Next, we turn to heavy nuclei, examining recent arguments for the strong
enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg,
for example. We concur that there is a significant enhancement while pointing
to effects neglected in previous work (both in the octupole-deformed nuclides
and 199Hg) that may reduce it somewhat, and emphasizing the need for
microscopic calculations to resolve the issue. Finally, we show that static
octupole deformation is not essential for the development of collective Schiff
moments; nuclei with strong octupole vibrations have them as well, and some
could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex
The Layer 0 Inner Silicon Detector of the D0 Experiment
This paper describes the design, fabrication, installation and performance of
the new inner layer called Layer 0 (L0) that was inserted in the existing Run
IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab
Tevatron collider. L0 provides tracking information from two layers of sensors,
which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm
respectively from the beam axis. The sensors and readout electronics are
mounted on a specially designed and fabricated carbon fiber structure that
includes cooling for sensor and readout electronics. The structure has a thin
polyimide circuit bonded to it so that the circuit couples electrically to the
carbon fiber allowing the support structure to be used both for detector
grounding and a low impedance connection between the remotely mounted hybrids
and the sensors.Comment: 28 pages, 9 figure
Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering
Many proteins in the inorganic=organic matrix of bone induce or modulate or inhibit mineralization of apatite
in vivo. Many attempts have been made to mimic and understand this mechanism as part of bone formation, and
ectopic mineralization and control thereof. Many attempts have also been made to use such proteins or protein
fragments to harness their potential for improved mineralization. Such proteins and peptide motifs have also been
the inspiration for attempts of making mimics of their structures and motifs using chemical or biological synthesis.
The aim of this review is to highlight how proteins and (poly)peptides themselves impact mineralization
in the human body, and how those could be used and have been used for improving apatite mineralization, for
example, on or in materials that by themselves do not induce apatite mineralization but otherwise have interesting
properties for use as bone tissue engineering scaffolds.J. Benesch wishes to acknowledge the financial support from FCT, postdoctoral fellowship scholarship SFRH/BPD/17584/2004. This work was carried out under the scope of the European Union NoE EXPERTISSUES (NMP3-CT-2004500283) and partially funded by the European Union FP6 STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and FCT project ProteoLight (PTDC/FIS/68517/2006)
- …
