11 research outputs found
Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland)
Alkali basaltic diatremes such as Elie Ness (Fife, Scotland) expose a range of volcanic lithofacies that points to a complex, multi-stage emplacement history. Here, basanites contain phenocrysts including pyrope garnet and sub-calcic augites from depths of ~60km. Volcanic rocks from all units, pyroclastic and hypabyssal, are characterised by rare earth element (REE) patterns that show continuous enrichment from heavy REE (HREE) to light REE (LREE), and high Zr/Y that are consistent with retention of garnet in the mantle source during melting of peridotite in a garnet lherzolite facies. Erupted garnets are euhedral and unresorbed, signifying rapid ascent through the lithosphere. The magmas also transported abundant pyroxenitic clasts, cognate with the basanite host, from shallower depths (~35–40km). These clasts exhibit wide variation in texture, mode and mineralogy, consistent with growth from a range of compositionally diverse melts. Further, clinopyroxene phenocrysts from both the hypabyssal and pyroclastic units exhibit a very wide compositional range, indicative of polybaric fractionation and magma mixing. This is attributed to stalling of earlier magmas in the lower crust — principally from ~22 to 28km — as indicated by pyroxene thermobarometry. Many clinopyroxenes display chemical zoning profiles, occasionally with mantles and rims of higher magnesium number (Mg#) suggesting the magmas were mobilised by juvenile basanite magma. The tuffs also contain alkali feldspar megacrysts together with Fe-clinopyroxene, zircon and related salic xenoliths, of the ‘anorthoclasite suite’ — inferred to have crystallised at upper mantle to lower crustal depths from salic magma in advance of the mafic host magmas. Despite evidence for entrainment of heterogeneous crystal mushes, the rapidly ascending melts experienced negligible crustal contamination. The complex association of phenocrysts, megacrysts and autoliths at Elie Ness indicates thorough mixing in a dynamic system immediately prior to explosive diatreme-forming eruptions.Clough and Mykura Fund of the Geological Society of Edinburgh; Timothy Jefferson Fund of the Geological Society of Londo
Plasmid-Encoded Interleukin-15 Receptor α Enhances Specific Immune Responses Induced by a DNA Vaccine In Vivo
Plasmid-encoded DNA vaccines appear to be a safe and effective method for delivering antigen; however, the immunogenicity of such vaccines is often suboptimal. Cytokine adjuvants including interleukin (IL)-12, RANTES, granulocyte-macrophage colony-stimulating factor, IL-15, and others have been used to augment the immune response against DNA vaccines. In particular, IL-15 binds to a unique high-affinity receptor, IL-15Rα; is trans-presented to CD8+ T cells expressing the common βγ chain; and has been shown to play a role in the generation, maintenance, and proliferation of antigen-specific CD8+ T cells. In this study, we took the unique approach of using both a cytokine and its receptor as an adjuvant in an HIV-1 vaccine strategy. To study IL-15Rα expression, a unique monoclonal antibody (KK1.23) was generated to confirm receptor expression in vitro. Coimmunization of IL-15 and IL-15Rα plasmids with HIV-1 antigenic plasmids in mice enhanced the antigen-specific immune response 2-fold over IL-15 immunoadjuvant alone. Furthermore, plasmid-encoded IL-15Rα augments immune responses in the absence of IL-15, suggesting its role as a novel adjuvant. Moreover, pIL-15Rα enhanced the cellular, but not the humoral, immune response as measured by antigen-specific IgG antibody. This is the first report describing that IL-15Rα itself can act as an adjuvant by enhancing an antigen-specific T cell response. Uniquely, pIL-15 and pIL-15Rα adjuvants combined, but not the receptor α chain alone, may be useful as a strategy for generating and maintaining memory CD8+ T cells in a DNA vaccine
Interleukin-15 production at the early stage after oral infection with Listeria monocytogenes in mice
We previously reported that exogenous interleukin-15 (IL-15) induces proliferation and activation of intestinal intraepithelial lymphocytes (i-IEL) in naive mice. To investigate the ability of endogenous IL-15 to stimulate i-IEL in vivo, we monitored i-IEL and intestinal epithelial cells (i-EC) in mice after an oral infection with Listeria monocytogenes. Although the populations of αβ and γδ i-IEL were not significantly changed after the oral infection, the expression level of interferon-γ (IFN-γ) was increased both at transcriptional and protein levels, and a conversely marked decrease in interleukin-4 (IL-4) was detected in the i-IEL on day 1 after infection as compared with before infection. The T helper 1 (Th1)-biased response of i-IEL coincided with a peak response of IL-15 production in the i-EC after oral infection. These results suggested that IL-15 produced from i-EC may be at least partly involved in the stimulation of i-IEL to produce IFN-γ after oral infection with L. monocytogenes