4 research outputs found

    Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy) in anxiety-like responses in mice

    Get PDF
    Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy) in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group). The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05) effects: a) a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b) decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c) increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d) increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e) increased serum corticosterone levels, and f) increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA

    3,4-methylenedioxymethamphetamine (mdma – Ecstasy) Decreases Neutrophil Activity Through The Glucocorticoid Pathway And Impairs Host Resistance To Listeria Monocytogenes Infection In Mice

    No full text
    Ecstasy is the popular name of the abuse drug 3,4-methylenedioxymethamphetamine (MDMA) that decreases immunity in animals. The mechanisms that generate such alterations are still controversial. Seven independent pharmacological approaches were performed in mice to identify the possible mechanisms underlying the decrease of neutrophil activity induced by MDMA and the possible effects of MDMA on host resistance to Listeria monocytogenes. Our data showed that MDMA (10 mg kg−1) administration decreases NFκB expression in circulating neutrophils. Metyrapone or RU-486 administration prior to MDMA treatment abrogated MDMA effects on neutrophil activity and NFκB expression, while 6-OHDA or ICI-118,551 administration did not. As MDMA treatment increased the plasmatic levels of adrenaline and noradrenaline, propranolol pre-treatment effects were also evaluated. Propranolol suppressed both MDMA-induced increase in corticosterone serum levels and its effects on neutrophil activity. In a L. monocytogenes experimental infection context, we showed that MDMA: induced myelosuppression by decreasing granulocyte-macrophage hematopoietic progenitors (CFU-GM) in the bone marrow but increased CFU-GM in the spleen; decreased circulating leukocytes and bone marrow cellularity and increased spleen cellularity; decreased pro-inflammatory cytokine (IL-12p70, TNF, IFN-γ, IL-6) and chemokine (MCP-1) production 24 h after the infection; increased the production of pro-inflammatory cytokines and chemokines 72 h after infection and decreased IL-10 levels at all time points analyzed. It was proposed that MDMA immunosuppressive effects on neutrophil activity and host resistance to L monocytogenes rely on NFκB signaling, being mediated by HPA axis activity and corticosterone.95690702Abraham, E., Alterations in cell signaling in sepsis (2005) Clin Infect Dis, 41, pp. S459-S464. , PID: 16237648, COI: 1:CAS:528:DC%2BD2MXht1emu7vKBasu, S., Dasgupta, P.S., Dopamine, a neurotransmitter, influences the immune system (2000) J Neuroimmunol, 102 (2), pp. 113-124. , PID: 10636479, COI: 1:CAS:528:DyaK1MXotVKqt7o%3DBoyle, N.T., Connor, T.J., MDMA (“Ecstasy”) suppresses the innate IFN-gamma response in vivo: a critical role for the anti-inflammatory cytokine IL-10 (2007) Eur J Pharmacol, 572 (2-3), pp. 228-238. , PID: 17689526, COI: 1:CAS:528:DC%2BD2sXhtVOlsbjOBoyle, N.T., Connor, T.J., Methylenedioxymethamphetamine (‘Ecstasy’)-induced immunosuppression: a cause for concern? (2010) Br J Pharmacol, 161 (1), pp. 17-32. , PID: 20718737, COI: 1:CAS:528:DC%2BC3cXht1KjurrPBrinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Neutrophil extracellular traps kill bacteria (2004) Science, 303 (5663), pp. 1532-1535. , PID: 15001782, COI: 1:CAS:528:DC%2BD2cXhslCgsb8%3DBugajski, J., Turon, M., Gadek-Michalska, A., Borycz, J.A., Catecholaminergic regulation of the hypothalamic-pituitary-adrenocortical activity (1991) J Physiol Pharmacol, 42 (1), pp. 93-103. , PID: 1681965, COI: 1:CAS:528:DyaK3sXhtFOgtr8%3DBugajski, J., Gadek-Michalska, A., Olowska, A., Borycz, J., Glod, R., Bugajski, A.J., Adrenergic regulation of the hypothalamic-pituitary-adrenal axis under basal and social stress conditions (1995) J Physiol Pharmacol, 46 (3), pp. 297-312. , PID: 8527811, COI: 1:CAS:528:DyaK2MXpsVSgtL4%3DCamarasa, J., Ros, C., Pubill, D., Escubedo, E., Tumour necrosis factor alpha suppression by MDMA is mediated by peripheral heteromeric nicotinic receptors (2010) Immunopharmacol Immunotoxicol, 32 (2), pp. 265-271. , PID: 20105082, COI: 1:CAS:528:DC%2BC3cXlsFGjtrs%3DCao, L., Filipov, N.M., Lawrence, D.A., Sympathetic nervous system plays a major role in acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes (2002) J Neuroimmunol, 125 (1-2), pp. 94-102. , PID: 11960645, COI: 1:CAS:528:DC%2BD38XivVSht7g%3DCao, L., Hudson, C.A., Lawrence, D.A., Acute cold/restraint stress inhibits host resistance to Listeria monocytogenes via beta1-adrenergic receptors (2003) Brain Behav Immun, 17 (2), pp. 121-133. , PID: 12676574, COI: 1:CAS:528:DC%2BD3sXisFSnsb0%3DConnor, T.J., McNamara, M.G., Finn, D., Currid, A., O’Malley, M., Redmond, A.M., Acute 3,4-methylenedioxymethamphetamine (MDMA) administration produces a rapid and sustained suppression of immune function in the rat (1998) Immunopharmacology, 38 (3), pp. 253-260. , PID: 9506825, COI: 1:CAS:528:DyaK1cXislyrsA%3D%3DConnor, T.J., Kelly, J.P., McGee, M., Leonard, B.E., Methylenedioxymethamphetamine (MDMAEcstasy) suppresses IL-1beta and TNF-alpha secretion following an in vivo lipopolysaccharide challenge (2000) Life Sci, 67 (13), pp. 1601-1612. , PID: 10983854, COI: 1:CAS:528:DC%2BD3cXmtFygurs%3DConnor, T.J., Connelly, D.B., Kelly, J.P., Methylenedioxymethamphetamine (MDMA‘Ecstasy’) suppresses antigen specific IgG2a and IFN-gamma production (2001) Immunol Lett, 78 (2), pp. 67-73. , PID: 11672589, COI: 1:CAS:528:DC%2BD3MXlslCntrc%3DConnor, T.J., Harkin, A., Kelly, J.P., Methylenedioxymethamphetamine suppresses production of the proinflammatory cytokine tumor necrosis factor-alpha independent of a beta-adrenoceptor-mediated increase in interleukin-10 (2005) J Pharmacol Exp Ther, 312 (1), pp. 134-143. , PID: 15331655, COI: 1:CAS:528:DC%2BD2MXhtVWmt7Y%3DCousens, L.P., Wing, E.J., Innate defenses in the liver during Listeria infection (2000) Immunol Rev, 174, pp. 150-159. , PID: 10807514, COI: 1:CAS:528:DC%2BD3cXjtVygsrY%3DDalrymple, S.A., Lucian, L.A., Slattery, R., McNeil, T., Aud, D.M., Fuchino, S., Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia (1995) Infect Immun, 63 (6), pp. 2262-2268. , PID: 7768607, COI: 1:CAS:528:DyaK2MXlvFels7c%3Dde la Torre, R., Farre, M., Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans (2004) Trends Pharmacol Sci, 25 (10), pp. 505-508. , PID: 15380932de Paula, V.F., Ribeiro, A., Pinheiro, M.L., Sakai, M., Lacava, M.C., Lapachinske, S.F., Methylenedioxymethamphetamine (Ecstasy) decreases neutrophil activity and alters leukocyte distribution in bone marrow, spleen and blood (2009) Neuroimmunomodulation, 16 (3), pp. 191-200. , PID: 19246942Emoto, M., Miyamoto, M., Emoto, Y., Yoshizawa, I., Brinkmann, V., van Rooijen, N., Highly biased type 1 immune responses in mice deficient in LFA-1 in Listeria monocytogenes infection are caused by elevated IL-12 production by granulocytes (2003) J Immunol, 171 (8), pp. 3970-3976. , PID: 14530315, COI: 1:CAS:528:DC%2BD3sXnvVOks7Y%3DFerraz-de-Paula, V., Stankevicius, D., Ribeiro, A., Pinheiro, M.L., Rodrigues-Costa, E.C., Florio, J.C., Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy) in anxiety-like responses in mice (2011) Braz J Med Biol Res, 44 (5), pp. 428-437. , PID: 21503414, COI: 1:CAS:528:DC%2BC3MXptFeisb8%3DHasui, M., Hirabayashi, Y., Kobayashi, Y., Simultaneous measurement by flow cytometry of phagocytosis and hydrogen peroxide production of neutrophils in whole blood (1989) J Immunol Methods, 117 (1), pp. 53-58. , PID: 2913161, COI: 1:CAS:528:DyaL1MXhvFSmt7Y%3DHayden, M.S., Ghosh, S., Shared principles in NF-kappaB signaling (2008) Cell, 132 (3), pp. 344-362. , PID: 18267068, COI: 1:CAS:528:DC%2BD1cXivVahtbY%3DHysek, C.M., Brugger, R., Simmler, L.D., Bruggisser, M., Donzelli, M., Grouzmann, E., Effects of the alpha(2)-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers (2012) J Pharmacol Exp Ther, 340 (2), pp. 286-294. , PID: 22034656, COI: 1:CAS:528:DC%2BC38XjtVSlt7w%3DJankovic, D., Kugler, D.G., Sher, A., IL-10 production by CD4+ effector T cells: a mechanism for self-regulation (2010) Mucosal Immunol, 3 (3), pp. 239-246. , PID: 20200511, COI: 1:CAS:528:DC%2BC3cXkvV2qur0%3DKeller, S.E., Schleifer, S.J., Liotta, A.S., Bond, R.N., Farhoody, N., Stein, M., Stress-induced alterations of immunity in hypophysectomized rats (1988) Proc Natl Acad Sci U S A, 85 (23), pp. 9297-9301. , PID: 2848259, COI: 1:STN:280:DyaL1M%2Flsl2hsQ%3D%3DKollet, O., Canaani, J., Kalinkovich, A., Lapidot, T., Regulatory cross talks of bone cells, hematopoietic stem cells and the nervous system maintain hematopoiesis (2012) Inflamm Allergy Drug Targets, 11 (3), pp. 170-180. , PID: 22280241, COI: 1:CAS:528:DC%2BC38XnsVOnsbs%3DKostrzewa, R.M., Jacobowitz, D.M., Pharmacological actions of 6-hydroxydopamine (1974) Pharmacol Rev, 26 (3), pp. 199-288. , PID: 4376244, COI: 1:STN:280:DyaE2M7jvFKrsg%3D%3DKruszewska, B., Felten, S.Y., Moynihan, J.A., Alterations in cytokine and antibody production following chemical sympathectomy in two strains of mice (1995) J Immunol, 155 (10), pp. 4613-4620. , PID: 7594460, COI: 1:CAS:528:DyaK2MXptlaqurk%3DLacava, M., Ferraz-de-Paula, V., Lapachinske, S.F., Palermo-Neto, J., Moreau, R.L.M., (2007) Simultaneous determination of methylenodioxymethamphetamine (MDMA) and methylenodioxyamphetamine (MDA) in plasma by gas chromatography with nitrogen-phosphorus detection (GC-NPD) and in vitro effects on the neutrophil activity of mice, pp. 97-104. , III Encuentro Regional de Toxicologia Forense, Bogotá: TIAFTLafarge, S., Hamzeh-Cognasse, H., Chavarin, P., Genin, C., Garraud, O., Cognasse, F., A flow cytometry technique to study intracellular signals NF-kappaB and STAT3 in peripheral blood mononuclear cells (2007) BMC Mol Biol, 8, p. 64. , PID: 17663801Ligeiro de Oliveira, A.P., Lazzarini, R., Cavriani, G., Quinteiro-Filho, W.M., Tavares de Lima, W., Palermo-Neto, J., Effects of single or repeated amphetamine treatment and withdrawal on lung allergic inflammation in rats (2008) Int Immunopharmacol, 8 (9), pp. 1164-1171. , PID: 18602061, COI: 1:CAS:528:DC%2BD1cXotlGitrg%3DMackaness, G.B., Cellular resistance to infection (1962) J Exp Med, 116, pp. 381-406. , PID: 14467923, COI: 1:STN:280:DyaF38%2FmvFersA%3D%3DMassoco, C., Palermo-Neto, J., Effects of midazolam on equine innate immune response: a flow cytometric study (2003) Vet Immunol Immunopathol, 95 (1-2), pp. 11-19. , PID: 12969632, COI: 1:CAS:528:DC%2BD3sXntVGqtbk%3DMetcalf, D., The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors (1986) Blood, 67 (2), pp. 257-267. , PID: 3002522, COI: 1:CAS:528:DyaL28Xht1ehsb8%3DMizruchin, A., Gold, I., Krasnov, I., Livshitz, G., Shahin, R., Kook, A.I., Comparison of the effects of dopaminergic and serotonergic activity in the CNS on the activity of the immune system (1999) J Neuroimmunol, 101 (2), pp. 201-204. , PID: 10580803, COI: 1:CAS:528:DyaK1MXntlent7k%3DNecela, B.M., Cidlowski, J.A., Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells (2004) Proc Am Thorac Soc, 1 (3), pp. 239-246. , PID: 16113441, COI: 1:CAS:528:DC%2BD28XhsFGisrs%3DNelson, D.A., Nirmaier, J.L., Singh, S.J., Tolbert, M.D., Bost, K.L., Ecstasy (3,4-methylenedioxymethamphetamine) limits murine gammaherpesvirus-68 induced monokine expression (2008) Brain Behav Immun, 22 (6), pp. 912-922. , PID: 18280699, COI: 1:CAS:528:DC%2BD1cXotlGjtb0%3DNewton, C.A., Lu, T., Nazian, S.J., Perkins, I., Friedman, H., Klein, T.W., The THC-induced suppression of Th1 polarization in response to Legionella pneumophila infection is not mediated by increases in corticosterone and PGE2 (2004) J Leukoc Biol, 76 (4), pp. 854-861. , PID: 15258190, COI: 1:CAS:528:DC%2BD2cXot12nsbY%3DPacifici, R., Farre, M., Pichini, S., Ortuno, J., Roset, P.N., Zuccaro, P., Sweat testing of MDMA with the Drugwipe analytical device: a controlled study with two volunteers (2001) J Anal Toxicol, 25 (2), pp. 144-146. , PID: 11300507, COI: 1:CAS:528:DC%2BD3MXitFajtL0%3DPacifici, R., Zuccaro, P., Farre, M., Pichini, S., Di Carlo, S., Roset, P.N., Effects of repeated doses of MDMA (“ecstasy”) on cell-mediated immune response in humans (2001) Life Sci, 69 (24), pp. 2931-2941. , PID: 11720096, COI: 1:CAS:528:DC%2BD3MXotl2gt78%3DPacifici, R., Zuccaro, P., Farre, M., Pichini, S., Di Carlo, S., Roset, P.N., Cell-mediated immune response in MDMA users after repeated dose administration: studies in controlled versus noncontrolled settings (2002) Ann N Y Acad Sci, 965, pp. 421-433. , PID: 12105117, COI: 1:CAS:528:DC%2BD38XlvVOjtbo%3DPacifici, R., Pichini, S., Zuccaro, P., Farre, M., Segura, M., Ortuno, J., Paroxetine inhibits acute effects of 3,4-methylenedioxymethamphetamine on the immune system in humans (2004) J Pharmacol Exp Ther, 309 (1), pp. 285-292. , PID: 14722327, COI: 1:CAS:528:DC%2BD2cXivFamtb0%3DPacifici, R., Zuccaro, P., Farre, M., Poudevida, S., Abanades, S., Pichini, S., Combined immunomodulating properties of 3,4-methylenedioxymethamphetamine (MDMA) and cannabis in humans (2007) Addiction, 102 (6), pp. 931-936. , PID: 17523988Parrott, A.C., Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research (2013) Hum Psychopharmacol, 28 (4), pp. 289-307. , PID: 23881877, COI: 1:CAS:528:DC%2BC3sXhtFOksbvIPennock, J.W., Stegall, R., Bubar, M.J., Milligan, G., Cunningham, K.A., Bourne, N., 3,4-Methylenedioxymethamphetamine increases susceptibility to genital herpes simplex virus infection in mice (2009) J Infect Dis, 200 (8), pp. 1247-1250. , PID: 19758099, COI: 1:CAS:528:DC%2BD1MXhtlyqsL7OQuax, R.A., Manenschijn, L., Koper, J.W., Hazes, J.M., Lamberts, S.W., van Rossum, E.F., Glucocorticoid sensitivity in health and disease (2013) Nat Rev, 9 (11), pp. 670-686. , COI: 1:CAS:528:DC%2BC3sXhsFOltbrPQueiroz Jde, S., Torello, C.O., Palermo-Neto, J., Valadares, M.C., Queiroz, M.L., Hematopoietic response of rats exposed to the impact of an acute psychophysiological stressor on responsiveness to an in vivo challenge with Listeria monocytogenes: modulation by Chlorella vulgaris prophylactic treatment (2008) Brain Behav Immun, 22 (7), pp. 1056-1065. , PID: 18420376Rice, P.A., Boehm, G.W., Moynihan, J.A., Bellinger, D.L., Stevens, S.Y., Chemical sympathectomy increases the innate immune response and decreases the specific immune response in the spleen to infection with Listeria monocytogenes (2001) J Neuroimmunol, 114 (1-2), pp. 19-27. , PID: 11240011, COI: 1:CAS:528:DC%2BD3MXhs1CjtL8%3DSegal, A.W., How neutrophils kill microbes (2005) Annu Rev Immunol, 23, pp. 197-223. , PID: 15771570, COI: 1:CAS:528:DC%2BD2MXktFOjtbY%3DSerbina, N.V., Kuziel, W., Flavell, R., Akira, S., Rollins, B., Pamer, E.G., Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection (2003) Immunity, 19 (6), pp. 891-901. , PID: 14670305, COI: 1:CAS:528:DC%2BD3sXhtVWnsrjKSparwasser, T., Hultner, L., Koch, E.S., Luz, A., Lipford, G.B., Wagner, H., Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis (1999) J Immunol, 162 (4), pp. 2368-2374. , PID: 9973517, COI: 1:CAS:528:DyaK1MXhtVOksLg%3DStankevicius, D., Ferraz-de-Paula, V., Ribeiro, A., Pinheiro, M.L., Ligeiro de Oliveira, A.P., Damazo, A.S., 3,4-methylenedioxymethamphetamine (ecstasy) decreases inflammation and airway reactivity in a murine model of asthma (2012) Neuroimmunomodulation, 19 (4), pp. 209-219. , PID: 22441537, COI: 1:CAS:528:DC%2BC38XksVOns7c%3DTorello, C.O., de Souza, Q.J., Oliveira, S.C., Queiroz, M.L., Immunohematopoietic modulation by oral beta-1,3-glucan in mice infected with Listeria monocytogenes (2010) Int Immunopharmacol, 10 (12), pp. 1573-1579. , PID: 20951668, COI: 1:CAS:528:DC%2BC3cXhsVyhtrfFTufail, S., Badrealam, K.F., Owais, M., Zubair, S., Illuminating the petite picture of T cell memory responses to (2013) Biomed Res Int, 2013, p. 121684. , PID: 24171157van den Engh, G., Bol, S., The presence of a CSF enhancing activity in the serum of endotoxin-treated mice (1975) Cell Tissue Kinet, 8 (6), pp. 579-587. , PID: 1081432Verheyden, S.L., Henry, J.A., Curran, H.V., Acute, sub-acute and long-term subjective consequences of ‘ecstasy’ (MDMA) consumption in 430 regular users (2003) Hum Psychopharmacol, 18 (7), pp. 507-517. , PID: 14533132, COI: 1:CAS:528:DC%2BD3sXptVCisL4%3DWilliams, M.A., Schmidt, R.L., Lenz, L.L., Early events regulating immunity and pathogenesis during Listeria monocytogenes infection (2012) Trends Immunol, 33 (10), pp. 488-495. , PID: 22677184, COI: 1:CAS:528:DC%2BC38Xot12ns74%3DZemishlany, Z., Aizenberg, D., Weizman, A., Subjective effects of MDMA (‘Ecstasy’) on human sexual function (2001) Eur Psychiatr, 16 (2), pp. 127-130. , COI: 1:STN:280:DC%2BD3M3itVCrtw%3D%3DZenewicz, L.A., Shen, H., Innate and adaptive immune responses to Listeria monocytogenes: a short overview (2007) Microbes Infect, 9 (10), pp. 1208-1215. , PID: 17719259, COI: 1:CAS:528:DC%2BD2sXhtVCntrv

    Supplementary Material for: 3,4-Methylenedioxymethamphetamine (Ecstasy) Decreases Inflammation and Airway Reactivity in a Murine Model of Asthma

    No full text
    <i>Objective:</i> 3,4-Methylenedioxymethamphetamine (MDMA), or ecstasy, is a synthetic drug used recreationally, mainly by young people. It has been suggested that MDMA has a Th cell skewing effect, in which Th1 cell activity is suppressed and Th2 cell activity is increased. Experimental allergic airway inflammation in ovalbumin (OVA)-sensitized rodents is a useful model to study Th2 response; therefore, based on the Th2 skewing effect of MDMA, we studied MDMA in a model of allergic lung inflammation in OVA-sensitized mice. <i>Methods: </i>We evaluated cell trafficking in the bronchoalveolar lavage fluid, blood and bone marrow; cytokine production; L-selectin expression and lung histology. We also investigated the effects of MDMA on tracheal reactivity in vitro and mast cell degranulation. <i>Results:</i> We found that MDMA given prior to OVA challenge in OVA-sensitized mice decreased leukocyte migration into the lung, as revealed by a lower cell count in the bronchoalveolar lavage fluid and lung histologic analysis. We also showed that MDMA decreased expression of both Th2-like cytokines (IL-4, IL-5 and IL-10) and adhesion molecules (L-selectin). Moreover, we showed that the hypothalamus-pituitary-adrenal axis is partially involved in the MDMA-induced reduction in leukocyte migration into the lung. Finally, we showed that MDMA decreased tracheal reactivity to methacholine as well as mast cell degranulation in situ. <i>Conclusions:</i> Thus, we report here that MDMA given prior to OVA challenge in OVA-sensitized allergic mice is able to decrease lung inflammation and airway reactivity and that hypothalamus-pituitary-adrenal axis activation is partially involved. Together, the data strongly suggest an involvement of a neuroimmune mechanism in the effects of MDMA on lung inflammatory response and cell recruitment to the lungs of allergic animals
    corecore