94 research outputs found

    Testing the blast wave model with Swift GRBs

    Full text link
    The complex structure of the light curves of Swift GRBs has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast wave parameters; electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of our sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within this framework and we can estimate, with confidence, the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in a number of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations.Comment: 14 pages, accepted by MNRAS after minor changes, including extension of discussion (section 4.3

    Detailed multiwavelength modelling of the dark GRB 140713A and its host galaxy

    Get PDF
    We investigate the afterglow of GRB 140713A, a gamma-ray burst (GRB) that was detected and relatively well sampled at X-ray and radio wavelengths, but was not present at optical and near-infrared wavelengths, despite searches to deep limits. We present the emission spectrum of the likely host galaxy at z = 0.935 ruling out a high-redshift explanation for the absence of the optical flux detection. Modelling the GRB multiwavelength afterglow using the radiative transfer hydrodynamics code boxfit provides constraints on physical parameters of the GRB jet and its environment, for instance a relatively wide jet opening angle and an electron energy distribution slope p below 2. Most importantly, the model predicts an optical flux about two orders of magnitude above the observed limits. We calculated that the required host extinction to explain the observed limits in the r, i, and z bands was A rm host-V gt 3.2 mag, equivalent to E(B ' V) host > 1.0 mag. From the X-ray absorption we derive that the GRB host extinction is A rm host-V = 11.6 +7.5-5.3 mag, equivalent to E(B-V) rm host = 3.7 +2.4-1.7 mag, which is consistent with the extinction required from our boxfit derived fluxes. We conclude that the origin of the optical darkness is a high level of extinction in the line of sight to the GRB, most likely within the GRB host galaxy

    The Swift X-Ray Te1escope: Status and Performance

    Get PDF
    We present science highlights and performance from the Swift X-ray Telescope (XRT), which was launched on November 20,2004. The XRT covers the 0.2-10 keV band, and spends most of its time observing gamma-ray burst (GRB) afterglows, though it has also performed observations of many other objects. By mid-August 2007, the XRT had observed over 220 GRB afterglows, detecting about 96% of them. The XRT positions enable followup ground-based optical observations, with roughly 60% of the afterglows detected at optical or near IR wavelengths. Redshifts are measured for 33% of X-ray afterglows. Science highlights include the discovery of flaring behavior at quite late times, with implications for GRB central engines; localization of short GRBs, leading to observational support for compact merger progenitors for this class of bursts; a mysterious plateau phase to GRB afterglows; as well as many other interesting observations such as X-ray emission from comets, novae, galactic transients, and other objects
    • …
    corecore