11 research outputs found

    An Intercomparison of Precipitable Water Vapor Measurements Obtained During the ECOWAR Field Campaign

    Get PDF
    In this study we present an intercomparison of measurements of very low water vapor column content obtained with a Ground‐Based Millimeter‐wave Spectrometer (GBMS), Vaisala RS92k radiosondes, a Raman Lidar, and an IR Fourier Transform Spectrometer. These sets of measurements were carried out during the primary field campaign of the ECOWAR (Earth COoling by WAter vapor Radiation) project which took place on the Western Italian Alps from 3 to 16 March, 2007

    An Intercomparison of Precipitable Water Vapor Measurements Obtained During the ECOWAR Field Campaign

    Get PDF
    In this study we present an intercomparison of measurements of very low water vapor column content obtained with a Ground‐Based Millimeter‐wave Spectrometer (GBMS), Vaisala RS92k radiosondes, a Raman Lidar, and an IR Fourier Transform Spectrometer. These sets of measurements were carried out during the primary field campaign of the ECOWAR (Earth COoling by WAter vapor Radiation) project which took place on the Western Italian Alps from 3 to 16 March, 2007

    Measurements from ground and balloons during APE-GAIA – A polar ozone library

    Get PDF
    Many long-term monitoring sites in Antarctic regions, which deploy ground-based stratospheric remote sensors and fly radiosondes or ozonesondes on balloons, supported the Airborne Polar Experiment in September and October 1999. Support consisted of supplying data to the campaign in real time, and in some cases by increasing the frequency of measurements during the campaign. The results will strengthen scientific conclusions from the airborne measurements. But results from these sites are allowing important scientific studies of new aspects of the ozone hole in their own right, because like the aircraft and its campaign, many sites traverse the vortex edge and are close to the largest source of lee waves, or measure infrequently observed trace gases such as HNO3. Examples of such studies are the behaviour and value of NO2 in midwinter, ozone filamentation with no apparent horizontal advection, the frequency and amplitude of gravity waves over the Antarctic Peninsula, mixing in the lowest stratosphere in Antarctic spring, the mechanism and frequency of HNO3 enhancement above the ozone peak in midwinter, and trends in UV dose in southern South America

    Validation of the Aura Microwave Limb Sounder HNO3 Measurements

    Get PDF
    [1] We assess the quality of the version 2.2 (v2.2) HNO(3) measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO(3) product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO(3) data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of similar to 0.7 ppbv throughout. Vertical resolution is 3-4 km in the upper troposphere and lower stratosphere, degrading to similar to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO(3) measurements biases that vary with altitude between +/- 0.5 and +/- 2 ppbv and multiplicative errors of +/- 5-15% throughout the stratosphere, rising to similar to +/- 30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO(3) measurements from ground- based, balloon- borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO(3) mixing ratios are uniformly low by 10-30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO(3) values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Accurate rotational constants for linear interstellar carbon chains: achieving experimental accuracy

    No full text
    corecore