6 research outputs found

    FOXO transcription factors : from cell fate decisions to regulation of human female reproduction

    No full text
    All key reproductive events in the human ovary and uterus, including follicle activation, ovulation, implantation, decidualization, luteolysis and menstruation, are dependent upon profound tissue remodelling, characterised by cyclical waves of cell proliferation, differentiation, apoptosis, tissue breakdown and regeneration. FOXO transcription factors, an evolutionarily conserved subfamily of the forkhead transcription factors, have emerged as master regulators ofcell fate decision capable ofintegrating avariety ofstress, growth factor and cytokine signaling pathways with the transcription machinery. The ability of FOXOs to regulate seemingly opposing cellular responses, ranging from cell cycle arrest and oxidative stress responses to differentiation and apoptosis, renders these transcription factors indispensable for cyclic tissue remodelling in female reproduction. Conversely, perturbations in the expression or activity of FOXO transcription factors are increasingly linked to common reproductive disorders, such as pregnancy loss, endometriosis, endometrial cancer and primary ovarian insufficiency

    III. ABTEILUNG. BIBLIOGRAPHISCHE NOTIZEN UND MITTEILUNGEN

    No full text

    Measurement of psi (2S) production cross-sections in proton-proton collisions at v s=7 and 13 TeV

    Get PDF
    The cross-sections of \u3c8(2 S) meson production in proton-proton collisions at s=13TeV are measured with a data sample collected by the LHCb detector corresponding to an integrated luminosity of 275pb-1. The production cross-sections for prompt \u3c8(2 S) mesons and those for \u3c8(2 S) mesons from b-hadron decays (\u3c8(2S)-from-b) are determined as functions of the transverse momentum, pT, and the rapidity, y, of the \u3c8(2 S) meson in the kinematic range 2<20GeV/c and 2.0 < y< 4.5. The production cross-sections integrated over this kinematic region are \u3c3(prompt\u3c8(2S),13TeV)=1.430\ub10.005(stat)\ub10.099(syst)\u3bcb,\u3c3(\u3c8(2S)-from-b,13TeV)=0.426\ub10.002(stat)\ub10.030(syst)\u3bcb.A new measurement of \u3c8(2 S) production cross-sections in pp collisions at s=7TeV is also performed using data collected in 2011, corresponding to an integrated luminosity of 614pb-1. The integrated production cross-sections in the kinematic range 3.5<14GeV/c and 2.0 < y< 4.5 are \u3c3(prompt\u3c8(2S),7TeV)=0.471\ub10.001(stat)\ub10.025(syst)\u3bcb,\u3c3(\u3c8(2S)-from-b,7TeV)=0.126\ub10.001(stat)\ub10.008(syst)\u3bcb.All results show reasonable agreement with theoretical calculations

    Measurement of the eta(c)(1S) production cross-section in p p collisions at root s=13TeV

    Get PDF
    Using a data sample corresponding to an integrated luminosity of 2.0 fb-1, collected by the LHCb experiment, the production of the \u3b7c(1 S) state in proton\u2013proton collisions at a centre-of-mass energy of s=13TeV is studied in the rapidity range 2.0 < y< 4.5 and in the transverse momentum range 6.5<14.0GeV. The cross-section for prompt production of \u3b7c(1 S) mesons relative to that of the J/ \u3c8 meson is measured using the pp\uaf decay mode and is found to be \u3c3\u3b7c(1S)/\u3c3J/\u3c8=1.69\ub10.15\ub10.10\ub10.18. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the J/\u3c8\u2192pp\uaf and \u3b7c\u2192pp\uaf decays. The prompt \u3b7c(1 S) production cross-section is determined to be \u3c3\u3b7c(1S)=1.26\ub10.11\ub10.08\ub10.14\u3bcb, where the last uncertainty includes that on the J/ \u3c8 meson cross-section. The ratio of the branching fractions of b-hadron decays to the \u3b7c(1 S) and J/ \u3c8 states is measured to be Bb\u2192\u3b7cX/Bb\u2192J/\u3c8X=0.48\ub10.03\ub10.03\ub10.05, where the last uncertainty is due to those on the branching fractions of the J/\u3c8\u2192pp\uaf and \u3b7c\u2192pp\uaf decays. The difference between the J/ \u3c8 and \u3b7c(1 S) masses is also determined to be 113.0\ub10.7\ub10.1MeV, which is the most precise single measurement of this quantity to date

    Further Progress in Venereology

    No full text
    corecore