106 research outputs found

    A re-evaluation of plastochron index determination in peas — a case for using leaflet length

    Get PDF
    The plastochron index (PI) is a measure of plant growth and can be used to determine growth rate, based upon appearance of successive leaves on the axis of the plant. PI should under ideal growth conditions be a regular event and should be predictable with a relatively small error of a few hours. PI has been variously calculated in peas, and each method reported has had with it a number of problems that do not allow for reasonable prediction of PI. Internode length varies greatly and is dependent upon the variety, which may be short- or long-stemmed; thus this parameter is not ideal for determining growth rate or plant age. This paper reports our findings on PI using the average length of the first pair of leaflets on each node. Early leaflet growth in peas occurs exponentially and the early stages of growth of successive pairs of leaflets occur at the same relative growth rate. Given that growth of leaflets during early development can be measured successfully, we propose the use of leaflet growth as a measure of the plastochron index in peas. Our results suggest that plant age is best expressed using the plastochron index, which is a measure of the time interval between the initiations of successive events — in the case of peas, of successive pairs of leaflets

    Phenotyping of dark and light adapted barley plants by the fast chlorophyll a fluorescence rise OJIP

    Get PDF
    Chlorophyll a fluorescence of dark adapted leaves of barley plants (Hordeum vulgare L.) upon exposure to actinic light was measured. We compared the photosynthetic behaviour of ten cultivars of barley plants in the dark and light adapted states. A significant relationship between the light adaptation (S1 to S2 transition) of the photosynthetic Performance Index (lPI/dPI) and the normalised Area (lSm/dSm) evaluated by the JIP-test was observed. The two parameters might provide a basis to rank the plants according to their tolerance to light stress conditions, i.e. the studied cultivars can be split into three groups with a different response to high light stress: tolerant, intermediate and sensitive

    Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies

    Full text link
    The surface and electronic structure of MOCVD-grown layers of Ga(0.92)In(0.08)N have been investigated by means of photoemission. An additional feature at the valence band edge, which can be ascribed to the presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface was prepared by argon ion sputtering and annealing. Stability of chemical composition of the investigated surface subjected to similar ion etching was proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure

    Diabetic gastroparesis: Therapeutic options

    Get PDF
    Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patient’s quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG

    Strategies in the use of light energy by Genipa spruceana Steyerm seedlings subjected to flooding

    Get PDF
    In an attempt to elucidate strategies in the use of light energy by G. spruceana seedlings subjected to flooding, we investigated the capacity of light capture and use of light energy by G. spruceana in three growing conditions: 1- absence of flooding (SA), 2- partially flooded (PA) and 3- totally flooded (TA). Destructive and non-destructive measurements, such as specific leaf area, chloroplast pigment (chlorophyll and carotenoids) content and fluorescence analyses, were made at regular intervals over a period of 90 days. All parameters decreased in seedlings subjected to flooding. Plants of treatment TA dropped all of their leaves after 30 days of complete submergence. Chloroplast pigment content differed between treatments SA and TA after 30 days from the start of the experiment; whereas SA and PA plants only differed for this variable after 90 days. Plants subjected to flooding (PA and TA) exhibited high dissipation of photochemical de-excitation (DIo/ABS), indicating a limited efficiency of light energy use. This fact was proven by the performance index (PI ABS) only in analyses after 90 days, and no significant difference was verified for PI ABS among treatments up to 30 days. Therefore, considering that G. spruceana seedlings subjected to flooding reduced the chloroplast pigment content more quickly than PI ABS, we suggest that the light energetic flux in G. spruceana seedlings subjected to flooding, in the beginning, is more restricted to a decrease in the structures that captures light (reduction chlorophyll pigment content) than how the photosynthetic apparatus functions (alterations in photochemical efficiency of photosystem II).Na tentativa de elucidar estratégias de utilização da energia luminosa em plantas jovens de Genipa spruceana Steyerm submetidas ao alagamento, nós investigamos a capacidade de captura e uso de energia luminosa em G. spruceana sob três condições de crescimento1- ausência de alagamento (SA), 2- plantas parcialmente alagadas (PA) e 3- plantas totalmente alagadas (TA). Medidas de área foliar específica, teores de pigmentos cloroplastídicos e fluorescência da clorofila a foram feitas em intervalos regulares no período de 90 dias. Todos os parâmetros analisados diminuíram em condições de alagamento (PA e TA). Aos 30 dias, as plantas no tratamento TA sofreram abscisão foliar. Os teores dos pigmentos cloroplastídicos (clorofilas e carotenóides) entre os tratamentos SA e TA diferiram aos 30 dias. Ao passo que, somente foi possível verificar diferenças entre os tratamentos SA e PA aos 90 dias. As plantas submetidas ao alagamento (PA e TA) exibiram alta dissipação de energia de excitação (DIo/ABS) indicando limitada eficiência na utilização da energia luminosa. Este fato foi comprovado pelos resultados do índice de desempenho (PI ABS) somente ao fim do período experimental (90 dias). Mas, não foi verificado diferença para PI ABS entre os tratamentos aos 30 dias. Portanto, considerando que G. spruceana submetidas ao tratamento TA reduziram seus teores de clorofilas mais rapidamente do que decrescem seus PI ABS, sugere-se que o fluxo de energia luminosa em plântulas de G. spruceana sob alagamento total, no início, é mais restringido pelo decréscimo na estrutura de captura de luz (diminuição dos pigmentos cloroplastídicos) do que no funcionamento do aparato fotossintético (alterações na eficiência fotoquímica do fotossistema II)
    corecore