24 research outputs found

    Morphology and foliar chemistry of containerized Abies fraseri (Pursh) Poir. seedlings as affected by water availability and nutrition

    Get PDF
    • We present the results of a two-year (2007–2008) greenhouse study investigating the effect of water availability and nitrogen fertilization on the growth, biomass partitioning, and foliar nutrient content of Abies fraseri (Pursh) Poir. • Fertilizer and moisture content (irrigation) were varied in a factorial experiment combining four levels of irrigation and three levels of fertilization to evaluate growth and foliar nutrient content. In addition, a numerical optimization was used to estimate appropriate levels of each factor necessary to achieve simulated goals for response variables. • Irrigation increased the height growth by 12 to 35% depending on the fertilization treatment (p = 0.0001). Fertilization increased height growth by 10 to 26% (p = 0.02). A similar response was observed for stem diameter growth (SDG). Total biomass accumulation increased as result of positive response of stem and root biomass development, and foliar nitrogen content was positively affected by nitrogen fertilization and negatively affected by irrigation. The numerical optimization for simulated target growth and nitrogen content responses produced levels of input combinations with high desirability factors to achieve the target responses. • These results suggest that nutrient addition is a strong determining factor for early development of this species. The improved growth efficiency in this study is likely attributed to a combination of factors including, improved photosynthetic capacity, decreased stomatal limitations, or increased resource allocation to stems

    An egg-hatch assay for resistance to levamisole in trichostrongyloid nematode parasites

    No full text
    An in vitro technique is described for detecting resistance of nematodes to the anthelmintic levamisole hydrochloride. Samples of eggs are developed under controlled temperature conditions until just prior to the commencement of hatching. They are then exposed to different concentrations of the drug and, when hatching is almost complete, the test samples are killed and preserved. The proportion of unhatched eggs at each drug concentration can then be counted at leisure. Provided a suitable range of drug concentrations is chosen for each test isolate, this assay provides results which may be satisfactorily fitted to a log-concentration-probit regression model. Comparisons with in vivo anthelmintic assays have shown that the technique provides an accurate reflection of the resistance status of parasite populations

    Linkage drag constrains the roots of modern wheat

    No full text
    Roots, the hidden half of crop plants, are essential for resource acquisition. However, knowledge about the genetic control of below-ground plant development in wheat, one of the most important small-grain crops in the world, is very limited. The molecular interactions connecting root and shoot development and growth, and thus modulating the plant's demand for water and nutrients along with its ability to access them, are largely unexplored. Here, we demonstrate that linkage drag in European bread wheat, driven by strong selection for a haplotype variant controlling heading date, has eliminated a specific combination of two flanking, highly conserved haplotype variants whose interaction confers increased root biomass. Reversing this inadvertent consequence of selection could recover root diversity that may prove essential for future food production in fluctuating environments. Highly conserved synteny to rice across this chromosome segment suggests that adaptive selection has shaped the diversity landscape of this locus across different, globally important cereal crops. By mining wheat gene expression data, we identified root-expressed genes within the region of interest that could help breeders to select positive variants adapted to specific target soil environments

    Voice processing in human and non-human primates

    No full text
    Humans share with non-human primates a number of voice perception abilities of crucial importance in social interactions, such as the ability to identify a conspecific individual from its vocalizations. Speech perception is likely to have evolved in our ancestors on the basis of pre-existing neural mechanisms involved in extracting behaviourally relevant information from conspecific vocalizations (CVs). Studying the neural bases of voice perception in primates thus not only has the potential to shed light on cerebral mechanisms that may be—unlike those involved in speech perception—directly homologous between species, but also has direct implications for our understanding of how speech appeared in humans. In this comparative review, we focus on behavioural and neurobiological evidence relative to two issues central to voice perception in human and non-human primates: (i) are CVs ‘special’, i.e. are they analysed using dedicated cerebral mechanisms not used for other sound categories, and (ii) to what extent and using what neural mechanisms do primates identify conspecific individuals from their vocalizations

    The Science Case for 4GLS

    Get PDF
    corecore