37 research outputs found

    Long-Range Coulomb Interaction and the Crossover between Quantum and Shot Noise in Diffusive Conductors

    Full text link
    Frequency-dependent nonequilibrium noise in quantum-coherent diffusive conductors is calculated with account taken of long-range Coulomb interaction. For long and narrow contacts with strong external screening the crossover between quantum and shot noise takes place at frequencies much smaller than the voltage drop across the contact. We also show that under certain frequency limitations, the semiclassical and quantum-coherent approaches to shot noise are mathematically equivalent.Comment: 13 pages, RevTex, 7 ps figures, more details of derivation give

    Coherent dynamics of a Josephson charge qubit

    Get PDF
    We have fabricated a Josephson charge qubit by capacitively coupling a single-Cooper-pair box (SCB) to an electrometer based upon a single-electron transistor configured for radio-frequency readout (RF-SET). Charge quantization of 2e is observed and microwave spectroscopy is used to extract the Josephson and charging energies of the box. We perform coherent manipulation of the SCB by using very fast DC pulses and observe quantum oscillations in time of the charge that persist to ~=10ns. The observed contrast of the oscillations is high and agrees with that expected from the finite E_J/E_C ratio and finite rise-time of the DC pulses. In addition, we are able to demonstrate nearly 100% initial charge state polarization. We also present a method to determine the relaxation time T_1 when it is shorter than the measurement time T_{meas}.Comment: accepted for publication in Phys. Rev.

    Single-shot measurement of the Josephson charge qubit

    Full text link
    We demonstrate single-shot readout of quantum states of the Josephson charge qubit. The quantum bits are transformed into and stored as classical bits (charge quanta) in a dynamic memory cell - a superconducting island. The transformation of state |1> (differing form state |0> by an extra Cooper pair) is a result of a controllable quasiparticle tunneling to the island. The charge is then detected by a conventional single-electron transistor, electrostatically decoupled from the qubit. We study relaxation dynamics in the system and obtain the readout efficiency of 87% and 93% for |1> and |0> states, respectively.Comment: submitted to Rapid Communications of Phys. Rev. B (february 2004

    Decoherence in circuits of small Josephson junctions

    Full text link
    We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time Ï„Ï•\tau_\phi.Comment: 4 pages, 4 figure

    Photo--assisted current and shot noise in the fractional quantum Hall effect

    Full text link
    The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise derivative exhibits steps as a function of bias. In contrast, at Laughlin fractions, the backscattering current and the backscattering noise both exhibit evenly spaced singularities, which are reminiscent of the tunneling density of states singularities for quasiparticles. The spacing is determined by the quasiparticle charge νe\nu e and the ratio of the DC bias with respect to the drive frequency. Photo--assisted transport can thus be considered as a probe for effective charges at such filling factors, and could be used in the study of more complicated fractions of the Hall effect. A non-perturbative method for studying photo--assisted transport at ν=1/2\nu=1/2 is developed, using a refermionization procedure.Comment: 14 pages, 6 figure

    Electronic and thermal sequential transport in metallic and superconducting two-junction arrays

    Full text link
    The description of transport phenomena in devices consisting of arrays of tunnel junctions, and the experimental confirmation of these predictions is one of the great successes of mesoscopic physics. The aim of this paper is to give a self-consistent review of sequential transport processes in such devices, based on the so-called "orthodox" model. We calculate numerically the current-voltage (I-V) curves, the conductance versus bias voltage (G-V) curves, and the associated thermal transport in symmetric and asymmetric two-junction arrays such as Coulomb-blockade thermometers (CBTs), superconducting-insulator-normal-insulator-superconducting (SINIS) structures, and superconducting single-electron transistors (SETs). We investigate the behavior of these systems at the singularity-matching bias points, the dependence of microrefrigeration effects on the charging energy of the island, and the effect of a finite superconducting gap on Coulomb-blockade thermometry.Comment: 23 pages, 12 figures; Berlin (ISBN: 978-3-642-12069-5

    Mesoscopic mean-field theory for spin-boson chains in quantum optical systems

    Get PDF
    We present a theoretical description of a system of many spins strongly coupled to a bosonic chain. We rely on the use of a spin-wave theory describing the Gaussian fluctuations around the mean-field solution, and focus on spin-boson chains arising as a generalization of the Dicke Hamiltonian. Our model is motivated by experimental setups such as trapped ions, or atoms/qubits coupled to cavity arrays. This situation corresponds to the cooperative (E⊗β) Jahn-Teller distortion studied in solid-state physics. However, the ability to tune the parameters of the model in quantum optical setups opens up a variety of novel intriguing situations. The main focus of this paper is to review the spin-wave theoretical description of this problem as well as to test the validity of mean-field theory. Our main result is that deviations from mean-field effects are determined by the interplay between magnetic order and mesoscopic cooperativity effects, being the latter strongly size-dependent

    Measuring the decoherence rate in a semiconductor charge qubit

    Get PDF
    We describe a method by which the decoherence time of a solid state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that, by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.Comment: 9 pages, 6 figures, revtex

    Shot Noise at High Temperatures

    Full text link
    We consider the possibility of measuring non-equilibrium properties of the current correlation functions at high temperatures (and small bias). Through the example of the third cumulant of the current (S3{\cal{S}}_3) we demonstrate that odd order correlation functions represent non-equilibrium physics even at small external bias and high temperatures. We calculate S3=y(eV/T)e2I{\cal{S}}_3=y(eV/T) e^2 I for a quasi-one-dimensional diffusive constriction. We calculate the scaling function yy in two regimes: when the scattering processes are purely elastic and when the inelastic electron-electron scattering is strong. In both cases we find that yy interpolates between two constants. In the low (high) temperature limit yy is strongly (weakly) enhanced (suppressed) by the electron-electron scattering.Comment: 11 pages 4 fig. submitted to Phys. Rev.

    Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems

    Get PDF
    We present a method for measuring single spins embedded in a solid by probing two electron systems with a single electron transistor (SET). Restrictions imposed by the Pauli Principle on allowed two electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and small textual changes. Submitted to Phys. Rev.
    corecore