1,355 research outputs found

    The collision of two slowly rotating, initially non boosted, black holes in the close limit

    Get PDF
    We study the collision of two slowly rotating, initially non boosted, black holes in the close limit. A ``punctures'' modification of the Bowen - York method is used to construct conformally flat initial data appropriate to the problem. We keep only the lowest nontrivial orders capable of giving rise to radiation of both gravitational energy and angular momentum. We show that even with these simplifications an extension to higher orders of the linear Regge-Wheeler-Zerilli black hole perturbation theory, is required to deal with the evolution equations of the leading contributing multipoles. This extension is derived, together with appropriate extensions of the Regge-Wheeler and Zerilli equations. The data is numerically evolved using these equations, to obtain the asymptotic gravitational wave forms and amplitudes. Expressions for the radiated gravitational energy and angular momentum are derived and used together with the results of the numerical evolution to provide quantitative expressions for the relative contribution of different terms, and their significance is analyzed.Comment: revtex, 18 pages, 2 figures. Misprints corrected. To be published in Phys. Rev.

    A gravitational memory effect in "boosted" black hole perturbation theory

    Full text link
    Black hole perturbation theory, or more generally, perturbation theory on a Schwarzschild bockground, has been applied in several contexts, but usually under the simplifying assumption that the ADM momentum vanishes, namely, that the evolution is carried out and observed in the ``center of momentum frame''. In this paper we consider some consequences of the inclusion of a non vanishing ADM momentum in the initial data. We first provide a justification for the validity of the transformation of the initial data to the ``center of momentum frame'', and then analyze the effect of this transformation on the gravitational wave amplitude. The most significant result is the possibility of a type of gravitational memory effect that appears to have no simple relation with the well known Christodoulou effect.Comment: REVTexIV, 15 pages, 2 EPS figure

    Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide

    Get PDF
    We demonstrate a scheme for in-plane initialization of a single exciton spin in an InGaAs quantum dot (QD) coupled to a GaAs nanobeam waveguide. The chiral coupling of the QD and the optical mode of the nanobeam enables spin initialization fidelity approaching unity in magnetic field B=1 T and >0.9 without the field. We further show that this in-plane excitation scheme is independent of the incident excitation laser polarization and depends solely on the excitation direction. This scheme provides a robust in-plane spin excitation basis for a photon-mediated spin network for quantum information applications

    Understanding the impact of cavitation on hydrocarbons in the middle distillate range

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Fuel. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Fuel, 156, September 2015, pp. 30-39, http://dx/doi.org/10.1016/j.fuel.2015.04.026Hydrocarbons in the middle distillate range (C8 - C26) have been treated with ultrasound at 20 kHz - a frequency sufficient to drive acoustic cavitation. The high temperatures experienced as a result of the implosion of fuel vapour bubbles are sufficient to produce pyrolytic degradation and dehydrogenation, as well as a growth mechanism that results in the formation of small particles that have similarities with the primary soot particles produced during diesel combustion. These nanosized particles agglomerate as a result of kinetically driven collisions during cavitation to form a dispersion of micron sized particles in the treated hydrocarbon. The particles are carbonaceous in character, being a mixture of amorphous and graphitic-like carbon. The mass of material produced increases with the C/H atomic ratio of the hydrocarbon undergoing cavitation and is decreased through the addition (1 - 3 %v/v) of low boiling paraffinic hydrocarbons, possibly as a result of lowering the temperature developed inside imploding cavities. Dispersions of microparticles contain equilibrated levels of nanoparticles. If sufficiently high numbers of these smaller primary particles are present they agglomerate due to thermally driven collisions during post-cavitation storage. When this happened a sharp rise in the number of 1 - 2 ”m particles was seen after only a few days. Some evidence is presented for the behaviour of ultrasonically treated hydrocarbons being related to the degradation of diesel fuel exposed to hydrodynamic cavitation in the fuel systems of modern common rail direct injection diesel engines.Shell Global Solution

    Beta Pic-like circumstellar disk gas surrounding HR 10 and HD 85905

    Get PDF
    We present high spectral resolution observations of the absorption lines of CaII and NaI associated with the circumstellar gas disk surrounding the two A-type shell stars HR 10 and HD 85905. Data taken over two four-night periods in January and November 1997 reveal substantial changes in the circumstellar absorption line profiles between successive observations of both stars. Such variable features have both blue and red-shifted velocities up to 50 km s-1 away from the central absorbing component, and are similar to those routinely observed in the [FORMULA] Pictoris system. The sporadic presence of the circumstellar absorption components observed towards both HR 10 and HD 85905 may be explained by the infalling evaporating comet model developed for the [FORMULA] Pictoris system by Beust et al. (1990). We note that variable circumstellar absorption features have also been detected in rapidly rotating A-type stars, such that they may be suffering irregular mass-loss that could give rise to similar circumstellar disks and shells

    An ultra-high-resolution study of the interstellar medium towards Orion

    Get PDF
    We report ultra-high-resolution observations graphic of Na I, Ca II, K I, CH and CH+ for interstellar sightlines towards 12 bright stars in Orion. These data enable the detection of many more absorption components than previously recognized, providing a more accurate perspective on the absorbing medium. This is especially so for the line of sight to the Orion nebula, a region not previously studied at very high resolution. Model fits have been constructed for the absorption-line profiles, providing estimates for the column density, velocity dispersion and central velocity for each constituent velocity component. A comparison between the absorption occurring in sightlines with small angular separations has been used, along with comparisons with other studies, to estimate the line-of-sight velocity structures. Comparisons with earlier studies have also revealed temporal variability in the absorption-line profile of ζ Ori, highlighting the presence of small-scale spatial structure in the interstellar medium on scales of ≈10 au. Where absorption from both Na0 and K0 is observed for a particular cloud, a comparison of the velocity dispersions measured for each of these species provides rigorous limits on both the kinetic temperature and turbulent velocity prevailing in each cloud. Our results indicate the turbulent motions to be subsonic in each case

    Engendering trust in the construction supply chain

    Get PDF
    Project success is dependent upon the effective management of people and at the heart of this process is trust. It is often claimed that the construction industry has low levels of trust and numerous reports globally have challenged the industry to address its poor performance on people management and cultural issues. The industry has a long-standing reputation for being adversarial, demonstrated by poor relationships between the client, main contractor and subcontractors, which in turn leads to numerous problems including poor project performance, cost control and poor long-term relationships between the parties involved. These problems are attributed primarily to a lack of harmonisation between contracting parties. This paper investigates the perceptions of trust within the supply chains of partnering projects. It explores the contextual issues surrounding the projects, focusing on the relationship between the partnering method of procurement and the levels of trust that exist within supply chains. This qualitative case study based research provides insights into the multifaceted nature of trust, the difficulty of defining the concept and its evolution through the duration of the project. The paper concludes that trust is an essential element for effective supply chain relationships and can be engendered through teamwork, leadership and the ultimate empowerment of the supply chain. It would appear on the basis of this research that trust can be realised within construction supply chains where partnering principles are a priority

    Plasma Wave Properties of the Schwarzschild Magnetosphere in a Veselago Medium

    Full text link
    We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a Veselago medium. Linear perturbation in rotating (non-magnetized and magnetized) plasma is introduced and their Fourier analysis is considered. We discuss wave properties with the help of wave vector, refractive index and change in refractive index in the form of graphs. It is concluded that some waves move away from the event horizon in this unusual medium. We conclude that for the rotating non-magnetized plasma, our results confirm the presence of Veselago medium while the rotating magnetized plasma does not provide any evidence for this medium.Comment: 20 pages, 15 figures, accepted for publication in Astrophys. Space Sc

    Isolation predicts compositional change after discrete disturbances in a global meta-study

    Get PDF
    Globally, anthropogenic disturbances are occurring at unprecedented rates and over extensive spatial and temporal scales. Human activities also affect natural disturbances, prompting shifts in their timing and intensities. Thus, there is an urgent need to understand and predict the response of ecosystems to disturbance. In this study, we investigated whether there are general determinants of community response to disturbance across different community types, locations, and disturbance events. We compiled 14 case studies of community response to disturbance from four continents, twelve aquatic and terrestrial ecosystem types, and eight different types of disturbance. We used community compositional differences and species richness to indicate community response. We used mixed-effects modeling to test the relationship between each of these response metrics and four potential explanatory factors: regional species pool size, isolation, number of generations passed, and relative disturbance intensity. We found that compositional similarity was higher between pre- and post-disturbance communities when the disturbed community was connected to adjacent undisturbed habitat. The number of generations that had passed since the disturbance event was a significant, but weak, predictor of community compositional change; two communities were responsible for the observed relationship. We found no significant relationships between the factors we tested and changes in species richness. To our knowledge, this is the first attempt to search for general drivers of community resilience from a diverse set of case studies. The strength of the relationship between compositional change and isolation suggests that it may be informative in resilience research and biodiversity management
    • 

    corecore