69 research outputs found

    A noninvasive multi-analyte diagnostic assay: Combining protein and DNA markers to stratify bladder cancer patients

    Get PDF
    Purpose: The authors recently reported the development of a noninvasive diagnostic assay using urinary matrix metalloproteinases (MMPs) as monitors of disease-free status and bladder cancer in high-risk populations. Using an approach called clinical intervention determining diagnostic (CIDD), they identified with high confidence those patients who could be excluded from additional intervention. To maximize performance, MMPs were combined with DNAbased markers and CIDD was applied to a population of patients undergoing monitoring for recurrence. Patients and methods: Urine samples were obtained from 323 patients, 48 of whom had a recurrence and 275 of whom did not have cancer upon cytoscopic evaluation. Twist1 and Nid2 methylation status was determined using methylation-specific polymerase chain reaction, FGFR3 mutational status by quantitative PCR, and MMP levels by enzyme-linked immunosorbent assay. Results: Using a combination of these DNA and protein markers, the authors identified with high confidence (97% negative predicted value) those patients who do not have cancer. Cutoffs were adjusted such that at 92% sensitivity, 51% of disease-free patients might be triaged from receiving further tests. Conclusion: The multi-analyte diagnostic readout assay described here is the first to combine protein and DNA biomarkers into one assay for optimal clinical performance. Using this approach, the detection of FGFR3 mutations and Twist1 and Nid2 methylation in the urine of patients undergoing bladder cancer recurrence screening increase the sensitivity and negative predictive value at an established MMP protein cutoff. This noninvasive urinary diagnostic assay could lead to the more efficient triage of patients undergoing recurrence monitoring

    Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients

    Get PDF
    Contains fulltext : 177804.pdf (publisher's version ) (Open Access)BACKGROUND: Prostate cancer antigen 3 (PCA3) is a prostate cancer diagnostic biomarker that has been clinically validated. The limitations of the diagnostic role of PCA3 in initial biopsy and the prognostic role are not well established. Here, we elucidate the limitations of tissue PCA3 to predict high grade tumors in initial biopsy. RESULTS: PCA3 has a bimodal distribution in both biopsy and radical prostatectomy (RP) tissues, where low PCA3 expression was significantly associated with high grade disease (p/=8) with 55% sensitivity and high false negative rates; 42% of high Gleason (>/=8) samples had low PCA3. In RP, low PCA3 is associated with adverse pathological features, clinical recurrence outcome and greater probability of metastatic progression (p<0.001). MATERIALS AND METHODS: A total of 1,694 expression profiles from biopsy and 10,382 from RP patients with high risk tumors were obtained from the Decipher Genomic Resource Information Database (GRIDTM)prostate cancer database. The primary clinical endpoint was distant metastasis-free survival for RP and high Gleason grade for biopsy. Logistic regression analyses and Cox proportional hazards models were used to evaluate the association of PCA3 with clinical variables and risk of metastasis. CONCLUSIONS: There is high prevalence of high grade tumors with low PCA3 expression in the biopsy setting. Therefore, urologists should be warned that using PCA3 as stand-alone test may lead to high rate of under-diagnosis of high grade disease in initial biopsy setting

    High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program

    Get PDF
    Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet

    Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    Get PDF
    Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri

    The role of salvage lymph node dissection in nonmetastatic castration-resistant prostate cancer: A single center experience

    No full text
    Objective: To evaluate oncologic outcomes of patients with nonmetastatic, castration-resistant prostate cancer treated with salvage lymph node dissection (sLND) or androgen-deprivation therapy (ADT) for lymph nodes (LN)-only recurrence. Materials and Methods: Retrospective analysis of 23 (51.1%) patients who underwent sLND and 22 (48.9%) men who received ADT for LN-only recurrence. Biochemical recurrence (BCR) was defined as prostate-specific antigen (PSA) &gt;0.2 ng/ml with an increased trend and radiological recurrence (RAR) was defined as a positive imaging study after sLND or ADT. Second line systemic therapies (SST) were defined as any systemic therapy administered for progression. Predictors of BCR, RAR, and SST were assessed with Cox regression analyses. Results: Mean PSA reduction was significantly higher after sLND than ADT (62.8% vs. 17.7%; P = 0.04). Clinical outcomes were not statistically different between the 2 groups. However, there was a trend toward a longer time to BCR (13.3 vs. 6 months; P = 0.2) and RAR (21.1 vs. 14.2 months, P = 0.09) in sLND patients than ADT. Median time to SST was longer in the sLND group than ADT (P = 0.04). Univariable Cox regression analyses showed that PSA doubling time and pT stage were associated with RAR and SST (all P &lt; 0.05). Conclusions: In patients with nonmetastatic, castration-resistant prostate cancer, sLND resulted in greater PSA decrease than ADT. We noted a nonstatistically significant trend toward longer time to BCR and longer time to RAR for patients treated with sLND than ADT. Additionally, sLND may increase time to SST as compared to ADT

    Immunopharmacogenomics: Mechanisms of HLA‐Associated Drug Reactions

    No full text
    The human leukocyte antigen (HLA) system is the most polymorphic in the human genome that has been associated with protection and predisposition to a broad array of infectious, autoimmune, and malignant diseases. More recently over the last two decades, HLA class I alleles have been strongly associated with T-cell-mediated drug hypersensitivity reactions. In the case of abacavir hypersensitivity and HLA-B*57:01, the 100% negative predictive value and low number needed to test to prevent a single case has led to a durable and effective global preprescription screening strategy. However, HLA associations are still undefined for most drugs clinically associated with different delayed drug hypersensitivity phenotypes, and an HLA association relevant to one population is not generalizable across ethnicities. Furthermore, while a specific risk HLA allele is necessary for drug-induced T-cell activation, it is not sufficient. The low and incomplete positive predictive value has hindered efforts at clinical implementation for many drugs but has provided the impetus to understand the mechanisms of HLA class I restricted T-cell-mediated drug hypersensitivity reactions. Current research has focused on defining the contribution of additional elements of the adaptive immune response and other genetic and ecologic risk factors that contribute to drug hypersensitivity risk. In this review we focus on new insights into immunological, pharmacological, and genetic mechanisms underpinning HLA-associated drug reactions and the implications for future translation into clinical care
    corecore