8 research outputs found

    The 2QDES Pilot : The luminosity and redshift dependence of quasar clustering

    Get PDF
    We present a new redshift survey, the 2dF Quasar Dark Energy Survey pilot (2QDESp), which consists of ≈10 000 quasars from ≈150 deg2 of the southern sky, based on VST-ATLAS imaging and 2dF/AAOmega spectroscopy. Combining our optical photometry with the WISE (W1,W2) bands we can select essentially contamination free quasar samples with 0.8 < z < 2.5 and g < 20.5. At fainter magnitudes, optical UVX selection is still required to reach our g ≈ 22.5 limit. Using both these techniques we observed quasar redshifts at sky densities up to 90 deg−2. By comparing 2QDESp with other surveys (SDSS, 2QZ and 2SLAQ) we find that quasar clustering is approximately luminosity independent, with results for all four surveys consistent with a correlation scale of r0 = 6.1 ± 0.1 h−1 Mpc, despite their decade range in luminosity. We find a significant redshift dependence of clustering, particularly when BOSS data with r0 = 7.3 ± 0.1 h−1 Mpc are included at z ≈ 2.4. All quasars remain consistent with having a single host halo mass of ≈2 ± 1 × 1012 h−1 M⊙. This result implies that either quasars do not radiate at a fixed fraction of the Eddington luminosity or AGN black hole and dark matter halo masses are weakly correlated. No significant evidence is found to support fainter, X-ray selected quasars at low redshift having larger halo masses as predicted by the ‘hot halo’ mode AGN model of Fanidakis et al. (2013). Finally, although the combined quasar sample reaches an effective volume as large as that of the original SDSS LRG sample, we do not detect the BAO feature in these data

    Femtosecond X-ray-induced explosion of C60 at extreme intensity

    Get PDF
    Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources

    WALLABY pilot survey: Public release of H <scp>i</scp> data for almost 600 galaxies from phase 1 of ASKAP pilot observations

    Get PDF
    International audienceAbstract We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three 60 deg260\,\mathrm{deg}^{2} regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of z≲0.08z \lesssim 0.08 . The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of z≈0.014z \approx 0.014 is relatively low compared to the full WALLABY survey. The median galaxy H i mass is 2.3×109 M⊙2.3 \times 10^{9}\,{\rm M}_{{\odot}} . The target noise level of 1.6 mJy1.6\,\mathrm{mJy} per 30′′ beam and 18.5 kHz18.5\,\mathrm{kHz} channel translates into a 5σ5 \sigma H i mass sensitivity for point sources of about 5.2×108 (DL/100 Mpc)2 M⊙5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}} across 50 spectral channels ( ≈200 km s−1{\approx} 200\,\mathrm{km \, s}^{-1} ) and a 5σ5 \sigma H i column density sensitivity of about 8.6×1019 (1+z)4 cm−28.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2} across 5 channels ( ≈20 km s−1{\approx} 20\,\mathrm{km \, s}^{-1} ) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.</jats:p

    Oxytocin: Coevolution of human and domesticated animals

    No full text
    The neuropeptide oxytocin (OT) and its homologues are produced in specialized neurons located in Vertebrates exclusively in a deep and evolutionarily old part of the forebrain, the hypothalamus. The axons of OT neurons form the classical hypothalamic-neurohypophyseal tract terminating on blood vessels of the neurohypothysis to release OT into the systemic blood circulation. However, as was recently demonstrated in mammals, collaterals of OT axons concomitantly project to various forebrain regions to modulate the activity of local networks. At the behavioral level, OT facilitates intraspecific social contacts in mammals via various mechanisms ranging from the suppression of neuroendocrine stress responses to the direct OT action on neurons of socially relevant brain regions. Recent reports indicated possible contribution of OT to the formation of the social bond between domesticated mammals (dog, sheep, cattle) and humans. Indeed, social interaction between humans and a domesticated animal resulted in the elevation of peripheral OT levels (in blood, saliva or urine) and, in congruence, exogenous (intranasal) OT application led to more frequent contacts between the owner and the domesticated animal. It has been known for decades that domesticated animals exhibit profound socio-communicative abilities accompanied by suppressed aggression and stress responsiveness. These peculiarities of their behavior and physiology may be influenced by the activity of the central OT system. Therefore, in the present mini-review we focus on the role of OT in the orchestration of distinct forms of social behavior, including the monogamous bond, maternal care, social memory and recognition, aggression, and anxiety. As a conclusion, we propose possible directions for exploration of the OT contribution to empathy between humans and domesticated animals, which was likely established in the course of their co-evolution during last 10.000– 15.000 years

    Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates: Synthesis, Structure, Transformations, and Applications

    No full text
    corecore