88 research outputs found

    Fatigue in patients with inflammatory bowel disease is associated with distinct differences in immune parameters

    Get PDF
    Background: Although it is well recognized that fatigue is an important problem in many of the quiescent inflammatory bowel disease (IBD) patients, it is unknown whether the immune status is different in fatigued versus non-fatigued patients. In this study, we contrasted various characteristics of the immune system in fatigued against non-fatigued patients with IBD in clinical remission. Patients and methods: Patients with IBD in clinical remission were phenotyped according to the Montreal classification, and the checklist individual strength-fatigue (CIS-fatigue) was used to assess fatigue (CIS-fatigue ≥ 35). Flow cytometry on peripheral blood samples was used to investigate differences in leukocyte subsets. The expression of various cytokines was determined in stimulated whole blood and serum samples using enzyme-linked immunosorbent assay. Differences between fatigued and non-fatigued patients with IBD were assessed. Results: In total, 55 patients were included in the fatigue group (FG) and 29 patients in the non-fatigue group (NFG). No differences in demographic and clinical characteristics were observed between the groups. Flow cytometry data showed a significantly lower percentage of monocytes (p = 0.011) and a higher percentage of memory T-cells (p = 0.005) and neutrophils (p = 0.033) in the FG compared with the NFG. Whole blood stimulation showed increased TNF-α (p = 0.022) and IFN-γ (p = 0.047) in the FG. The median serum level was significantly higher for IL-12 (p < 0.001) and IL-10 (p = 0.005) and lower for IL-6 (p = 0.002) in the FG compared with NFG. Conclusion: Significant differences in immune profile between fatigued and non-fatigued patients with IBD in clinical remission wer

    A randomized phase II study comparing two schedules of the 21-day regimen of gemcitabine and carboplatin in advanced non-small cell lung cancer

    Get PDF
    Purpose: Carboplatin area under the curve (AUC) 5 ml/min on day 1 with gemcitabine 1,250 mg/m2on day 1 and day 8 is a widely used regimen in advanced non-small cell lung cancer. Grade 3-4 thrombocytopenia and neutropenia are frequent. The aim of this study is to investigate whether toxicity of gemcitabine/carboplatin could be reduced by administering carboplatin on day 8 instead of

    Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation

    Get PDF
    Background: Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. Results: Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. Conclusion: Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes.Significance: Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction.Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes.UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. beta-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFN gamma and 114 secretion).Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue.Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes

    Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation

    Get PDF
    Background: Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. Results: Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. Conclusion: Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes.Significance: Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction.Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes.UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. beta-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFN gamma and 114 secretion).Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue.Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes

    Toxicity of pemetrexed during renal impairment explained-Implications for safe treatment

    Get PDF
    Item does not contain fulltextPemetrexed is an important component of first line treatment in patients with non-squamous non-small cell lung cancer. However, a limitation is the contraindication in patients with renal impairment due to hematological toxicity. Currently, it is unknown how to safely dose pemetrexed in these patients. The aim of our study was to elucidate the relationship between pemetrexed exposure and toxicity to support the development of a safe dosing regimen in patients with renal impairment. A population pharmacokinetic/pharmacodynamic analysis was performed based on phase II study results in three patients with renal dysfunction, supplemented with data from 106 patients in early clinical studies. Findings were externally validated with data of different pemetrexed dosing regimens. Alternative dosing regimens were evaluated using the developed model. We found that pemetrexed toxicity was driven by the time above a toxicity threshold concentration. The threshold for vitamin-supplemented patients was 0.110 mg/mL (95% CI: 0.092-0.146 mg/mL). It was observed that in patients with renal impairment (estimated glomerular filtration rate [eGFR]: <45 mL/min) the approved dose of 500 mg/m(2) would yield a high probability of severe neutropenia in the range of 51.0% to 92.6%. A pemetrexed dose of 20 mg for patients (eGFR: 20 mL/min) is shown to be neutropenic-equivalent to the approved dose in patients with adequate renal function (eGFR: 90 mL/min), but would result in an approximately 13-fold lower area under the concentration-time curve. The pemetrexed exposure-toxicity relationship is explained by a toxicity threshold and substantially different from previously thought. Without prophylaxis for toxicity, it is unlikely that a therapeutic dose can be safely administered to patients with renal impairment

    Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

    Get PDF
    Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost

    Fluorescence polarisation activity-based protein profiling for the identification of deoxynojirimycin-type inhibitors selective for lysosomal retaining alpha- and beta-glucosidases

    Get PDF
    Lysosomal exoglycosidases are responsible for processing endocytosed glycans from the non-reducing end to produce the corresponding monosaccharides. Genetic mutations in a particular lysosomal glycosidase may result in accumulation of its particular substrate, which may cause diverse lysosomal storage disorders. The identification of effective therapeutic modalities to treat these diseases is a major yet poorly realised objective in biomedicine. One common strategy comprises the identification of effective and selective competitive inhibitors that may serve to stabilize the proper folding of the mutated enzyme, either during maturation and trafficking to, or residence in, endo-lysosomal compartments. The discovery of such inhibitors is greatly aided by effective screening assays, the development of which is the focus of the here-presented work. We developed and applied fluorescent activity-based probes reporting on either human GH30 lysosomal glucosylceramidase (GBA1, a retaining & beta;-glucosidase) or GH31 lysosomal retaining & alpha;-glucosidase (GAA). FluoPol-ABPP screening of our in-house 358-member iminosugar library yielded compound classes selective for either of these enzymes. In particular, we identified a class of N-alkyldeoxynojirimycins that inhibit GAA, but not GBA1, and that may form the starting point for the development of pharmacological chaperone therapeutics for the lysosomal glycogen storage disease that results from genetic deficiency in GAA: Pompe disease.NWOChemThemMedical BiochemistryBio-organic Synthesi

    The iminosugar AMP-DNM improves satiety and activates brown adipose tissue through GLP1

    Get PDF
    Obesity is taking worldwide epidemic proportions, yet effective pharmacological agents with long-term efficacy remain unavailable. Previously, we designed the iminosugar AMP-DNM which potently improves glucose homeostasis by lowering excessive glycosphingolipids. Here we show that AMP-DNM promotes satiety and activates brown adipose tissue (BAT) in obese rodents. Moreover, we demonstrate that the mechanism mediating these favorable actions depends on oral, but not central, administration of AMP-DNM, which ultimately stimulates systemic glucagon-like peptide-1 (GLP1) secretion. We evidence an essential role of brain GLP1 receptors (GLP1r) as AMP-DNM fails to promote satiety and activate BAT in mice lacking the brain GLP1r as well as in mice treated intracerebroventricularly with GLP1r antagonist exendin-9. In conclusion, AMP-DNM markedly ameliorates metabolic abnormalities in obese rodents by restoring satiety and activating BAT through central GLP1r, while improving glucose homeostasis by mechanisms independent of central GLP1r.Bio-organic SynthesisMedical Biochemistr
    • …
    corecore