807 research outputs found

    An Iterative Procedure for Removing Random-Valued Impulse Noise

    Full text link

    Geometry, thermodynamics, and finite-size corrections in the critical Potts model

    Full text link
    We establish an intriguing connection between geometry and thermodynamics in the critical q-state Potts model on two-dimensional lattices, using the q-state bond-correlated percolation model (QBCPM) representation. We find that the number of clusters of the QBCPM has an energy-like singularity for q different from 1, which is reached and supported by exact results, numerical simulation, and scaling arguments. We also establish that the finite-size correction to the number of bonds, has no constant term and explains the divergence of related quantities as q --> 4, the multicritical point. Similar analyses are applicable to a variety of other systems.Comment: 12 pages, 6 figure

    Addendum to "Superimposed Oscillations in the WMAP Data?"

    Full text link
    We elaborate further on the possibility that the inflationary primordial power spectrum contains superimposed oscillations. We study various effects which could influence the calculation of the multipole moments in this case. We also present the theoretical predictions for two other cosmological observables, the matter power spectrum and the EE polarization channel.Comment: 4 pages, 3 figures, uses RevTex4, matches published versio

    Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites

    Full text link
    We investigate the possibility of preparing left-handed materials in metallic magnetic granular composites. Based on the effective medium approximation, we show that by incorporating metallic magnetic nanoparticles into an appropriate insulating matrix and controlling the directions of magnetization of metallic magnetic components and their volume fraction, it may be possible to prepare a composite medium of low eddy current loss which is left-handed for electromagnetic waves propagating in some special direction and polarization in a frequency region near the ferromagnetic resonance frequency. This composite may be easier to make on an industrial scale. In addition, its physical properties may be easily tuned by rotating the magnetization locally.Comment: 5 figure

    Cosmic Rays during BBN as Origin of Lithium Problem

    Full text link
    There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN) epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be the origin of Lithium problem or not. It can be expected that BBNCRs flux will be small in order to keep the success of standard BBN (SBBN). With favorable assumptions on the BBNCR spectrum between 0.09 -- 4 MeV, our numerical calculation showed that extra contributions from BBNCRs can account for the 7^7Li abundance successfully. However 6^6Li abundance is only lifted an order of magnitude, which is still much lower than the observed value. As the deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the allowed parameter space for the spectrum is strictly constrained. We should emphasize that the acceleration mechanism for BBNCRs in the early universe is still an open question. For example, strong turbulent magnetic field is probably the solution to the problem. Whether such a mechanism can provide the required spectrum deserves further studies.Comment: 34 pages, 21 figures, published versio

    Adiabatic Transfer of Electrons in Coupled Quantum Dots

    Full text link
    We investigate the influence of dissipation on one- and two-qubit rotations in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with adiabatically varying parameters. For weak dissipation, we solve a master equation, compare with direct perturbation theory, and derive an expression for the `fidelity loss' during a simple operation that adiabatically moves an electron between two coupled dots. We discuss the possibility of visualizing coherent quantum oscillations in electron `pump' currents, combining quantum adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the role of intermediate charge states has been discussed recently, we apply our formalism to calculate the fidelity loss due to charge tunneling between two dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.

    The Coherent State Representation of Quantum Fluctuations in the Early Universe

    Get PDF
    Using the squeezed state formalism the coherent state representation of quantum fluctuations in an expanding universe is derived. It is shown that this provides a useful alternative to the Wigner function as a phase space representation of quantum fluctuations. The quantum to classical transition of fluctuations is naturally implemented by decohering the density matrix in this representation. The entropy of the decohered vacua is derived. It is shown that the decoherence process breaks the physical equivalence between vacua that differ by a coordinate dependent phase generated by a surface term in the Lagrangian. In particular, scale invariant power spectra are only obtained for a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with corrections and significant new calculation

    Kinetic Inflation in Stringy and Other Cosmologies

    Get PDF
    An inflationary epoch driven by the kinetic energy density in a dynamical Planck mass is studied. In the conformally related Einstein frame it is easiest to see the demands of successful inflation cannot be satisfied by kinetic inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle is manifest as a kind of graceful exit problem and/or a kind of flatness problem. These arguments indicate the weakness of only the simplest formulation. {}From them can be gleaned directions toward successful kinetic inflation.Comment: 26 pages, LaTeX, CITA-94-2

    Steering of a Bosonic Mode with a Double Quantum Dot

    Full text link
    We investigate the transport and coherence properties of a double quantum dot coupled to a single damped boson mode. Our numerically results reveal how the properties of the boson distribution can be steered by altering parameters of the electronic system such as the energy difference between the dots. Quadrature amplitude variances and the Wigner function are employed to illustrate how the state of the boson mode can be controlled by a stationary electron current through the dots.Comment: 10 pages, 6 figures, to appear in Phys. Rev.

    Big bang nucleosynthesis with a varying fine structure constant and non-standard expansion rate

    Full text link
    We calculate primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take non-standard values. We compare them with the recent values of observed D, He4 and Li7 abundances, which show slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a non-standard expansion rate separately but solutions are found by their simultaneous existence.Comment: 5 pages, 5 figure
    • …
    corecore