807 research outputs found
Geometry, thermodynamics, and finite-size corrections in the critical Potts model
We establish an intriguing connection between geometry and thermodynamics in
the critical q-state Potts model on two-dimensional lattices, using the q-state
bond-correlated percolation model (QBCPM) representation. We find that the
number of clusters of the QBCPM has an energy-like singularity for q different
from 1, which is reached and supported by exact results, numerical simulation,
and scaling arguments. We also establish that the finite-size correction to the
number of bonds, has no constant term and explains the divergence of related
quantities as q --> 4, the multicritical point. Similar analyses are applicable
to a variety of other systems.Comment: 12 pages, 6 figure
Addendum to "Superimposed Oscillations in the WMAP Data?"
We elaborate further on the possibility that the inflationary primordial
power spectrum contains superimposed oscillations. We study various effects
which could influence the calculation of the multipole moments in this case. We
also present the theoretical predictions for two other cosmological
observables, the matter power spectrum and the EE polarization channel.Comment: 4 pages, 3 figures, uses RevTex4, matches published versio
Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites
We investigate the possibility of preparing left-handed materials in metallic
magnetic granular composites. Based on the effective medium approximation, we
show that by incorporating metallic magnetic nanoparticles into an appropriate
insulating matrix and controlling the directions of magnetization of metallic
magnetic components and their volume fraction, it may be possible to prepare a
composite medium of low eddy current loss which is left-handed for
electromagnetic waves propagating in some special direction and polarization in
a frequency region near the ferromagnetic resonance frequency. This composite
may be easier to make on an industrial scale. In addition, its physical
properties may be easily tuned by rotating the magnetization locally.Comment: 5 figure
Cosmic Rays during BBN as Origin of Lithium Problem
There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN)
epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be
the origin of Lithium problem or not. It can be expected that BBNCRs flux will
be small in order to keep the success of standard BBN (SBBN). With favorable
assumptions on the BBNCR spectrum between 0.09 -- 4 MeV, our numerical
calculation showed that extra contributions from BBNCRs can account for the
Li abundance successfully. However Li abundance is only lifted an order
of magnitude, which is still much lower than the observed value. As the
deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the
allowed parameter space for the spectrum is strictly constrained. We should
emphasize that the acceleration mechanism for BBNCRs in the early universe is
still an open question. For example, strong turbulent magnetic field is
probably the solution to the problem. Whether such a mechanism can provide the
required spectrum deserves further studies.Comment: 34 pages, 21 figures, published versio
Adiabatic Transfer of Electrons in Coupled Quantum Dots
We investigate the influence of dissipation on one- and two-qubit rotations
in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with
adiabatically varying parameters. For weak dissipation, we solve a master
equation, compare with direct perturbation theory, and derive an expression for
the `fidelity loss' during a simple operation that adiabatically moves an
electron between two coupled dots. We discuss the possibility of visualizing
coherent quantum oscillations in electron `pump' currents, combining quantum
adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the
role of intermediate charge states has been discussed recently, we apply our
formalism to calculate the fidelity loss due to charge tunneling between two
dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.
The Coherent State Representation of Quantum Fluctuations in the Early Universe
Using the squeezed state formalism the coherent state representation of
quantum fluctuations in an expanding universe is derived. It is shown that this
provides a useful alternative to the Wigner function as a phase space
representation of quantum fluctuations. The quantum to classical transition of
fluctuations is naturally implemented by decohering the density matrix in this
representation. The entropy of the decohered vacua is derived. It is shown that
the decoherence process breaks the physical equivalence between vacua that
differ by a coordinate dependent phase generated by a surface term in the
Lagrangian. In particular, scale invariant power spectra are only obtained for
a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with
corrections and significant new calculation
Kinetic Inflation in Stringy and Other Cosmologies
An inflationary epoch driven by the kinetic energy density in a dynamical
Planck mass is studied. In the conformally related Einstein frame it is easiest
to see the demands of successful inflation cannot be satisfied by kinetic
inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle
is manifest as a kind of graceful exit problem and/or a kind of flatness
problem. These arguments indicate the weakness of only the simplest
formulation. {}From them can be gleaned directions toward successful kinetic
inflation.Comment: 26 pages, LaTeX, CITA-94-2
Steering of a Bosonic Mode with a Double Quantum Dot
We investigate the transport and coherence properties of a double quantum dot
coupled to a single damped boson mode. Our numerically results reveal how the
properties of the boson distribution can be steered by altering parameters of
the electronic system such as the energy difference between the dots.
Quadrature amplitude variances and the Wigner function are employed to
illustrate how the state of the boson mode can be controlled by a stationary
electron current through the dots.Comment: 10 pages, 6 figures, to appear in Phys. Rev.
Big bang nucleosynthesis with a varying fine structure constant and non-standard expansion rate
We calculate primordial abundances of light elements produced during big bang
nucleosynthesis when the fine structure constant and/or the cosmic expansion
rate take non-standard values. We compare them with the recent values of
observed D, He4 and Li7 abundances, which show slight inconsistency among
themselves in the standard big bang nucleosynthesis scenario. This
inconsistency is not solved by considering either a varying fine structure
constant or a non-standard expansion rate separately but solutions are found by
their simultaneous existence.Comment: 5 pages, 5 figure
- …